Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Blindsight depends on the lateral geniculate nucleus


This article has been updated


Injury to the primary visual cortex (V1) leads to the loss of visual experience. Nonetheless, careful testing shows that certain visually guided behaviours can persist even in the absence of visual awareness1,2,3,4. The neural circuits supporting this phenomenon, which is often termed blindsight, remain uncertain4. Here we demonstrate that the thalamic lateral geniculate nucleus (LGN) has a causal role in V1-independent processing of visual information. By comparing functional magnetic resonance imaging (fMRI) and behavioural measures with and without temporary LGN inactivation, we assessed the contribution of the LGN to visual functions of macaque monkeys (Macaca mulatta) with chronic V1 lesions. Before LGN inactivation, high-contrast stimuli presented to the lesion-affected visual field (scotoma) produced significant V1-independent fMRI activation in the extrastriate cortical areas V2, V3, V4, V5/middle temporal (MT), fundus of the superior temporal sulcus (FST) and lateral intraparietal area (LIP) and the animals correctly located the stimuli in a detection task. However, following reversible inactivation of the LGN in the V1-lesioned hemisphere, fMRI responses and behavioural detection were abolished. These results demonstrate that direct LGN projections to the extrastriate cortex have a critical functional contribution to blindsight. They suggest a viable pathway to mediate fast detection during normal vision.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Visual processing in V1-lesioned monkeys.
Figure 3: Role of the LGN in driving V1-independent visual processing.
Figure 4: Quantitative summary of mean fMRI activation levels.

Change history

  • 15 July 2009

    A small correction was made to the Fig. 2 legend.


  1. 1

    Weiskrantz, L., Warrington, E. K. & Sanders, M. D. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97, 709–728 (1974)

    CAS  Article  Google Scholar 

  2. 2

    Cowey, A. & Stoerig, P. Blindsight in monkeys. Nature 373, 247–249 (1995)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Keating, E. G. Residual spatial vision in the monkey after removal of striate and preoccipital cortex. Brain Res. 187, 271–290 (1980)

    CAS  Article  Google Scholar 

  4. 4

    Cowey, A. The blindsight saga. Exp. Brain Res. 200, 3–24 (2010)

    ADS  Article  Google Scholar 

  5. 5

    Brewer, A. A., Press, W. A., Logothetis, N. K. & Wandell, B. A. Visual areas in macaque cortex measured using functional magnetic resonance imaging. J. Neurosci. 22, 10416–10426 (2002)

    CAS  Article  Google Scholar 

  6. 6

    Schmid, M. C., Panagiotaropoulos, T., Augath, M. A., Logothetis, N. K. & Smirnakis, S. M. Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex. PLoS ONE 4 e5527 10.1371/journal.pone.0005527 (2009)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Baseler, H. A., Morland, A. B. & Wandell, B. A. Topographic organization of human visual areas in the absence of input from primary cortex. J. Neurosci. 19, 2619–2627 (1999)

    CAS  Article  Google Scholar 

  8. 8

    Cowey, A. & Stoerig, P. Visual detection in monkeys with blindsight. Neuropsychologia 35, 929–939 (1997)

    CAS  Article  Google Scholar 

  9. 9

    Collins, C. E., Lyon, D. C. & Kaas, J. H. Responses of neurons in the middle temporal visual area after long-standing lesions of the primary visual cortex in adult new world monkeys. J. Neurosci. 23, 2251–2264 (2003)

    CAS  Article  Google Scholar 

  10. 10

    Campion, J., Latto, R. & Smith, Y. M. Is blindsight an effect of scattered light, spared cortex, and near-threshold vision? Behav. Brain Sci. 6, 423–447 (1983)

    Article  Google Scholar 

  11. 11

    Goebel, R., Muckli, L., Zanella, F. E., Singer, W. & Stoerig, P. Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients. Vision Res. 41, 1459–1474 (2001)

    CAS  Article  Google Scholar 

  12. 12

    Rodman, H. R., Gross, C. G. & Albright, T. D. Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal. J. Neurosci. 9, 2033–2050 (1989)

    CAS  Article  Google Scholar 

  13. 13

    Sincich, L. C., Park, K. F., Wohlgemuth, M. J. & Horton, J. C. Bypassing V1: a direct geniculate input to area MT. Nature Neurosci. 7, 1123–1128 (2004)

    CAS  Article  Google Scholar 

  14. 14

    Bullier, J. & Kennedy, H. Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey. Exp. Brain Res. 53, 168–172 (1983)

    CAS  Article  Google Scholar 

  15. 15

    Cope, D. W., Hughes, S. W. & Crunelli, V. GABAA receptor-mediated tonic inhibition in thalamic neurons. J. Neurosci. 25, 11553–11563 (2005)

    CAS  Article  Google Scholar 

  16. 16

    Curcio, C. A. & Allen, K. A. Topography of ganglion cells in human retina. J. Comp. Neurol. 300, 5–25 (1990)

    CAS  Article  Google Scholar 

  17. 17

    McAnany, J. J. & Levine, M. W. Magnocellular and parvocellular visual pathway contributions to visual field anisotropies. Vision Res. 47, 2327–2336 (2007)

    Article  Google Scholar 

  18. 18

    Cowey, A., Stoerig, P. & Perry, V. H. Transneuronal retrograde degeneration of retinal ganglion cells after damage to striate cortex in macaque monkeys: selective loss of Pβ cells. Neuroscience 29, 65–80 (1989)

    CAS  Article  Google Scholar 

  19. 19

    Diamond, I. T. & Hall, W. C. Evolution of neocortex. Science 164, 251–262 (1969)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Mohler, C. W. & Wurtz, R. H. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. J. Neurophysiol. 40, 74–94 (1977)

    CAS  Article  Google Scholar 

  21. 21

    Rodman, H. R., Gross, C. G. & Albright, T. D. Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal. J. Neurosci. 10, 1154–1164 (1990)

    CAS  Article  Google Scholar 

  22. 22

    Stepniewska, I., Qi, H. X. & Kaas, J. H. Do superior colliculus projection zones in the inferior pulvinar project to MT in primates? Eur. J. Neurosci. 11, 469–480 (1999)

    CAS  Article  Google Scholar 

  23. 23

    Berman, R. A. & Wurtz, R. H. Functional identification of a pulvinar path from superior colliculus to cortical area MT. J. Neurosci 30, 6342–6354 (2010)

    CAS  Article  Google Scholar 

  24. 24

    Lyon, D. C., Nassi, J. J. & Callaway, E. M. A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65, 270–279 (2010)

    CAS  Article  Google Scholar 

  25. 25

    Bender, D. B. Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus. Brain Res. 279, 258–261 (1983)

    CAS  Article  Google Scholar 

  26. 26

    Schiller, P. H., Logothetis, N. K. & Charles, E. R. Functions of the colour-opponent and broad-band channels of the visual system. Nature 343, 68–70 (1990)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Maunsell, J. H., Nealey, T. A. & DePriest, D. D. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J. Neurosci. 10, 3323–3334 (1990)

    CAS  Article  Google Scholar 

  28. 28

    Cowey, A. & Stoerig, P. Projection patterns of surviving neurons in the dorsal lateral geniculate nucleus following discrete lesions of striate cortex: implications for residual vision. Exp. Brain Res. 75, 631–638 (1989)

    CAS  Article  Google Scholar 

  29. 29

    Harting, J. K., Huerta, M. F., Hashikawa, T. & van Lieshout, D. P. Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J. Comp. Neurol. 304, 275–306 (1991)

    CAS  Article  Google Scholar 

  30. 30

    Bridge, H., Thomas, O., Jbabdi, S. & Cowey, A. Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 131, 1433–1444 (2008)

    Article  Google Scholar 

Download references


We thank A. Maier and D. McMahon for comments on the manuscript; S. Smirnakis, R. Berman, R. Wurtz, B. Richmond, S. Guderian and M. Fukushima for discussions; C. Zhu and H. Merkle for magnetic resonance coil construction; K. Smith, N. Phipps, J. Yu, G. Dold, D. Ide and T. Talbot for technical assistance; D. Sheinberg for developing visual stimulation software; and members of the Brian Wandell laboratory for developing and sharing mrVista software. This work was supported by the Intramural Research Programme of the NIMH, the NINDS, and the NEI.

Author information




M.C.S. took the primary lead for all aspects of this work and wrote the paper; S.W.M. helped with experiments and analysis; J.T. helped with the experiments and developed the inactivation method; R.C.S. created the lesions; M.W. developed the inactivation method; A.J.P. helped with experiments and analysis; F.Q.Y. developed pre-processing software and optimized magnetic resonance sequences; and D.A.L. provided resources, acted in a supervisory role on all aspects of this work and wrote the paper.

Corresponding author

Correspondence to Michael C. Schmid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 with legends, Supplementary Methods and References. (PDF 2166 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmid, M., Mrowka, S., Turchi, J. et al. Blindsight depends on the lateral geniculate nucleus. Nature 466, 373–377 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing