Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium


Large-conductance, voltage- and calcium-activated potassium (BK, or KCa1.1) channels are ubiquitously expressed in electrically excitable and non-excitable cells1,2, either as α-subunit (BKα) tetramers or together with tissue specific auxiliary β-subunits (β1–β4)3,4,5. Activation of BK channels typically requires coincident membrane depolarization and elevation in free cytosolic Ca2+ concentration ([Ca2+]i)6,7, which are not physiological conditions for most non-excitable cells. Here we present evidence that in non-excitable LNCaP prostate cancer cells, BK channels can be activated at negative voltages without rises in [Ca2+]i through their complex with an auxiliary protein, leucine-rich repeat (LRR)-containing protein 26 (LRRC26). LRRC26 modulates the gating of a BK channel by enhancing the allosteric coupling between voltage-sensor activation and the channel’s closed–open transition. This finding reveals a novel auxiliary protein of a voltage-gated ion channel that gives an unprecedentedly large negative shift (−140 mV) in voltage dependence and provides a molecular basis for activation of BK channels at physiological voltages and calcium levels in non-excitable cells.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Identification of LRRC26 as a BK channel accessory protein in LNCaP cells.
Figure 2: Co-expression of LRRC26 with BKα is necessary and sufficient for formation of the LNCaP-type low- V 1/2 BK channels.
Figure 3: Properties of LRRC26 protein.
Figure 4: The LRRC26 modulatory mechanism in the context of the BK channel voltage-dependent allosteric gating model.


  1. Kolb, H. A. Potassium channels in excitable and non-excitable cells. Rev. Physiol. Biochem. Pharmacol. 115, 51–91 (1990)

    CAS  PubMed  Google Scholar 

  2. Salkoff, L., Butler, A., Ferreira, G., Santi, C. & Wei, A. High-conductance potassium channels of the SLO family. Nature Rev. Neurosci. 7, 921–931 (2006)

    CAS  Article  Google Scholar 

  3. Uebele, V. N. et al. Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. J. Biol. Chem. 275, 23211–23218 (2000)

    CAS  Article  PubMed  Google Scholar 

  4. Brenner, R., Jegla, T. J., Wickenden, A., Liu, Y. & Aldrich, R. W. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275, 6453–6461 (2000)

    CAS  Article  PubMed  Google Scholar 

  5. Behrens, R. et al. hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Lett. 474, 99–106 (2000)

    CAS  Article  PubMed  Google Scholar 

  6. Barrett, J. N., Magleby, K. L. & Pallotta, B. S. Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (Lond.) 331, 211–230 (1982)

    CAS  Article  Google Scholar 

  7. Berkefeld, H. et al. BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314, 615–620 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. Fodor, A. A. & Aldrich, R. W. Convergent evolution of alternative splices at domain boundaries of the BK channel. Annu. Rev. Physiol. 71, 19–36 (2009)

    CAS  Article  PubMed  Google Scholar 

  9. Schubert, R. & Nelson, M. T. Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol. Sci. 22, 505–512 (2001)

    CAS  Article  PubMed  Google Scholar 

  10. Yan, J. et al. Profiling the phospho-status of the BKCa channel alpha subunit in rat brain reveals unexpected patterns and complexity. Mol. Cell. Proteomics 7, 2188–2198 (2008)

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  11. Tang, X. D., Garcia, M. L., Heinemann, S. H. & Hoshi, T. Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing. Nature Struct. Mol. Biol. 11, 171–178 (2004)

    Article  Google Scholar 

  12. Gessner, G. et al. BKCa channels activating at resting potential without calcium in LNCaP prostate cancer cells. J. Membr. Biol. 208, 229–240 (2006)

    Article  Google Scholar 

  13. Egland, K. A. et al. High expression of a cytokeratin-associated protein in many cancers. Proc. Natl Acad. Sci. USA 103, 5929–5934 (2006)

    ADS  CAS  Article  PubMed Central  PubMed  Google Scholar 

  14. Kobe, B. & Kajava, A. V. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732 (2001)

    CAS  Article  PubMed  Google Scholar 

  15. Bella, J., Hindle, K. L., McEwan, P. A. & Lovell, S. C. The leucine-rich repeat structure. Cell. Mol. Life Sci. 65, 2307–2333 (2008)

    CAS  Article  PubMed  Google Scholar 

  16. Kunzelmann, K. Ion channels and cancer. J. Membr. Biol. 205, 159–173 (2005)

    CAS  Article  PubMed  Google Scholar 

  17. Cambien, B. et al. Silencing of hSlo potassium channels in human osteosarcoma cells promotes tumorigenesis. Int. J. Cancer 123, 365–371 (2008)

    CAS  Article  PubMed  Google Scholar 

  18. Bloch, M. et al. KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 26, 2525–2534 (2007)

    CAS  Article  PubMed  Google Scholar 

  19. Weaver, A. K., Liu, X. & Sontheimer, H. Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma cells. J. Neurosci. Res. 78, 224–234 (2004)

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  20. Xia, X. M., Zeng, X. & Lingle, C. J. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880–884 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  21. Horrigan, F. T. & Aldrich, R. W. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen. Physiol. 120, 267–305 (2002)

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  22. Ma, Z., Lou, X. J. & Horrigan, F. T. Role of charged residues in the S1–S4 voltage sensor of BK channels. J. Gen. Physiol. 127, 309–328 (2006)

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  23. Bao, L. & Cox, D. H. Gating and ionic currents reveal how the BKCa channel’s Ca2+ sensitivity is enhanced by its β1 subunit. J. Gen. Physiol. 126, 393–412 (2005)

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  24. Wang, B., Rothberg, B. S. & Brenner, R. Mechanism of β4 subunit modulation of BK channels. J. Gen. Physiol. 127, 449–465 (2006)

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  25. Horrigan, F. T. & Ma, Z. Mg2+ enhances voltage sensor/gate coupling in BK channels. J. Gen. Physiol. 131, 13–32 (2007)

    Article  Google Scholar 

  26. Yang, H. et al. Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains. Nature Struct. Mol. Biol. 15, 1152–1159 (2008)

    CAS  Article  Google Scholar 

  27. Thurm, H., Fakler, B. & Oliver, D. Ca2+-independent activation of BKCa channels at negative potentials in mammalian inner hair cells. J. Physiol. (Lond.) 569, 137–151 (2005)

    CAS  Article  Google Scholar 

  28. Kim, H. M. et al. Structural diversity of the hagfish variable lymphocyte receptors. J. Biol. Chem. 282, 6726–6732 (2007)

    CAS  Article  PubMed  Google Scholar 

Download references


We are grateful to I. Pastan and X. F. Liu for the generous gift of LRRC26 antibody and plasmids. We thank J. Trimmer for discussion and W. Li, L. Scott, J. Greeson, X. Chen and H. Liu for reading the manuscript. We thank A. Hall, H. Cha and U. Bagaria for research assistance. Mass spectrometry was performed at the UC Davis Proteomics Facility. J.Y. acknowledges postdoctoral fellowship support from the American Heart Association.

Author information

Authors and Affiliations



J.Y. performed the experiments. J.Y. and R.W.A. designed the research, analysed the data and wrote the paper.

Corresponding author

Correspondence to Richard W. Aldrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-7 with legends. (PDF 1266 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yan, J., Aldrich, R. LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature 466, 513–516 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing