Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

Abstract

The nearby extrasolar planet GJ 436b—which has been labelled as a ‘hot Neptune’—reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet’s radius and mass1,2, and the latter constrains the planet’s temperature3,4 and, with measurements at multiple wavelengths, its atmospheric composition. Previous work5 using transmission spectroscopy failed to detect the 1.4-μm water vapour band, leaving the planet’s atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH4) deficiency relative to thermochemical equilibrium models6 for the predicted hydrogen-dominated atmosphere7,8. Moreover, we report the presence of some H2O and traces of CO2. Because CH4 is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing9 and polymerization of methane10 into substances such as ethylene may be required to explain the hot Neptune’s small CH4-to-CO ratio, which is at least 105 times smaller than predicted6.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Secondary eclipses of GJ 436b at six Spitzer wavelengths.
Figure 2: Broadband spectrum constraints for GJ 436b.
Figure 3: Contours showing the explored mixing ratios of methane.

References

  1. 1

    Gillon, M. et al. Detection of transits of the nearby hot Neptune GJ 436 b. Astron. Astrophys. 472, L13–L16 (2007)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Torres, G. The transiting exoplanet host star GJ 436: a test of stellar evolution models in the lower main sequence, and revised planetary parameters. Astrophys. J. 671, L65–L68 (2007)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Deming, D. et al. Spitzer transit and secondary eclipse photometry of GJ 436b. Astrophys. J. 667, L199–L202 (2007)

    ADS  Article  Google Scholar 

  4. 4

    Demory, B.-O. et al. Characterization of the hot Neptune GJ 436 b with Spitzer and groundbased observations. Astron. Astrophys. 475, 1125–1129 (2007)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Pont, F., Gilliland, R. L., Knutson, H., Holman, M. & Charbonneau, D. Transit infrared spectroscopy of the hot Neptune around GJ 436 with the Hubble Space Telescope. Mon. Not. R. Astron. Soc. 393, L6–L10 (2009)

    ADS  Article  Google Scholar 

  6. 6

    Burrows, A. & Sharp, C. M. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Figueira, P. et al. Bulk composition of the transiting hot Neptune around GJ 436. Astron. Astrophys. 493, 671–676 (2009)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Rogers, L. A. & Seager, S. A framework for quantifying the degeneracies of exoplanet interior compositions. Astrophys. J. 712, 974–991 (2010)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Saumon, D. et al. Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf Gliese 570D. Astrophys. J. 647, 552–557 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Zahnle, K., Marley, M. S. & Fortney, J. J. Thermometric soots on hot Jupiters? Preprint at 〈http://arxiv.org/abs/0911.0728〉 (2009)

  11. 11

    Werner, M. W. et al. The Spitzer Space Telescope mission. Astrophys. J. Suppl. Ser. 154, 1–9 (2004)

    ADS  Article  Google Scholar 

  12. 12

    Ford, E. B. Quantifying the uncertainty in the orbits of extrasolar planets. Astrophys. J. 129, 1706–1717 (2005)

    ADS  CAS  Google Scholar 

  13. 13

    Knutson, H. A., Charbonneau, D., Allen, L. E., Burrows, A. & Megeath, S. T. The 3.6–8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Harrington, J., Luszcz, S., Seager, S., Deming, D. & Richardson, L. J. The hottest planet. Nature 447, 691–693 (2007)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Deming, D., Seager, S., Richardson, L. J. & Harrington, J. Infrared radiation from an extrasolar planet. Nature 434, 740–743 (2005)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Caceres, C. et al. High cadence near infrared timing observations of extrasolar planets: I. GJ 436b and XO-1b. Astron. Astrophys. 507, 481–486 (2009)

    ADS  Article  Google Scholar 

  17. 17

    Maness, H. L. et al. The M dwarf GJ 436 and its Neptune-mass planet. Publ. Astron. Soc. Pacif. 119, 90–101 (2007)

    ADS  Article  Google Scholar 

  18. 18

    Madhusudhan, N. & Seager, S. A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Lodders, K. & Fegley, B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen. Icarus 155, 393–424 (2002)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Zahnle, K., Marley, M. S., Freedman, R. S., Lodders, K. & Fortney, J. J. Atmospheric sulfur photochemistry on hot Jupiters. Astrophys. J. 701, L20–L24 (2009)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Swain, M. R. et al. A ground-based near-infrared emission spectrum of the exoplanet HD189733b. Nature 463, 637–639 (2010)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Cho, J., Menou, K., Hansen, B. M. S. & Seager, S. Atmospheric circulation of close-in extrasolar giant planets. I. Global, barotropic, adiabatic simulations. Astrophys. J. 675, 817–845 (2008)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Alonso, R. et al. Limits to the planet candidate GJ 436c. Astron. Astrophys. 487, L5–L8 (2008)

    ADS  Article  Google Scholar 

  24. 24

    Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. Preprint at 〈http://arxiv.org/abs/astro-ph/0405087〉 (2004)

  25. 25

    Bean, J. L., Benedict, G. F. & Endl, M. Metallicities of M dwarf planet hosts from spectral synthesis. Astrophys. J. 653, L65–L68 (2006)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Swain, M. R. et al. Molecular signatures in the near-infrared dayside spectrum of HD 189733b. Astrophys. J. 690, L114–L117 (2009)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H. & Owen, T. C. Composition and origin of the atmosphere of Jupiter — an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105–112 (2003)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Lodders, K. & Fegley, B. Jr. The origin of carbon monoxide in Neptune’s atmosphere. Icarus 112, 368–375 (1994)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002)

    ADS  Article  Google Scholar 

  30. 30

    Reiners, A. Activity-induced radial velocity jitter in a flaring M dwarf. Astron. Astrophys. 498, 853–861 (2009)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Spitzer staff for rapid scheduling; M. Gillon, A. Lanotte and T. Loredo for discussions; D. Wilson for contributed code; and A. Wright for manuscript comments. We thank the following for software: the Free Software Foundation, W. Landsman and other contributors to the Interactive Data Language Astronomy Library, contributors to SciPy, Matplotlib and the Python programming language, and the open-source community. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This material is based on work supported by the US NSF and by the US NASA through an award issued by JPL/Caltech.

Author Contributions K.B.S. wrote the paper and Supplementary Information with contributions from J.H., N.M. and R.A.H.; N.M. and S.S. produced the atmospheric models; S.N., K.B.S. and W.C.B. reduced the data; K.B.S., J.H. and D.D. analysed the results; D.D. ran an independent analysis; R.A.H. produced the orbital parameter results; and J.H., K.B.S., S.N., R.A.H., E.R. and N.B.L. wrote the analysis pipeline.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Stevenson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

The original data are available from the Spitzer Space Telescope archive, programs 30129 and 40685.

Supplementary information

Supplementary Information

This file contains Supplementary Information comprising: Centring and Photometry; Position Sensitivity; Time-Varying Sensitivity; Determining the Best Model and a Supplementary Discussion, Supplementary Figures 1–17 with legends, Supplementary Tables 1–9, and Supplementary References. (PDF 2534 kb)

Supplementary Data

This zipped file contains Supplementary Data si1-si6, which show Spitzer lightcurves in digital form. Wavelengths used are 3.6µm (si1a-c), 4.5µm (si2), 5.8µm (si3), 8.0µm (si4), 16µm (si5) and 24µm (si6). (ZIP 26575 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stevenson, K., Harrington, J., Nymeyer, S. et al. Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b. Nature 464, 1161–1164 (2010). https://doi.org/10.1038/nature09013

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing