Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1

Abstract

Adiponectin is an anti-diabetic adipokine. Its receptors possess a seven-transmembrane topology with the amino terminus located intracellularly, which is the opposite of G-protein-coupled receptors. Here we provide evidence that adiponectin induces extracellular Ca2+ influx by adiponectin receptor 1 (AdipoR1), which was necessary for subsequent activation of Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ), AMPK and SIRT1, increased expression and decreased acetylation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and increased mitochondria in myocytes. Moreover, muscle-specific disruption of AdipoR1 suppressed the adiponectin-mediated increase in intracellular Ca2+ concentration, and decreased the activation of CaMKK, AMPK and SIRT1 by adiponectin. Suppression of AdipoR1 also resulted in decreased PGC-1α expression and deacetylation, decreased mitochondrial content and enzymes, decreased oxidative type I myofibres, and decreased oxidative stress-detoxifying enzymes in skeletal muscle, which were associated with insulin resistance and decreased exercise endurance. Decreased levels of adiponectin and AdipoR1 in obesity may have causal roles in mitochondrial dysfunction and insulin resistance seen in diabetes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Decreased mitochondria, oxidative type I myofibres and exercise capacity in skeletal muscle of muscle-R1KO mice.
Figure 2: Mechanisms of abnormal glucose and insulin homeostasis in muscle-R1KO mice.
Figure 3: Adiponectin/AdipoR1 increase PGC-1α expression and activity, and mitochondrial biogenesis in C2C12 myocytes.
Figure 4: Adiponectin-induced Ca 2+ influx by AdipoR1 in C2C12 myocytes and Xenopus oocytes.
Figure 5: Adiponectin-induced Ca 2+ influx is required for CaMKK and AMPK activation and PGC-1α expression.
Figure 6: The effect of exercise on muscle-R1KO mice.

References

  1. 1

    Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995)

    CAS  PubMed  Google Scholar 

  2. 2

    Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996)

    CAS  PubMed  Google Scholar 

  3. 3

    Maeda, K. et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289 (1996)

    CAS  PubMed  Google Scholar 

  4. 4

    Nakano, Y., Tobe, T., Choi-Miura, N.-H., Mazda, T. & Tomita, M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120, 803–812 (1996)

    CAS  PubMed  Google Scholar 

  5. 5

    Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000)

    CAS  PubMed  Google Scholar 

  6. 6

    Fruebis, J. et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010 (2001)

    ADS  CAS  PubMed  Google Scholar 

  7. 7

    Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 7, 941–946 (2001)

    CAS  PubMed  Google Scholar 

  8. 8

    Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Med. 7, 947–953 (2001)

    CAS  PubMed  Google Scholar 

  9. 9

    Kubota, N. et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002)

    CAS  PubMed  Google Scholar 

  10. 10

    Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Med. 8, 731–737 (2002)

    ADS  CAS  PubMed  Google Scholar 

  11. 11

    Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Med. 8, 1288–1295 (2002)

    CAS  PubMed  Google Scholar 

  12. 12

    Tomas, E. et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA 99, 16309–16313 (2002)

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005)

    CAS  PubMed  Google Scholar 

  14. 14

    Kersten, S., Desvergne, B. & Wahli, W. Roles of PPARs in health and disease. Nature 405, 421–424 (2000)

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Yamauchi, T. et al. Globular adiponectin protected ob/ob mice from diabetes and apoE deficient mice from atherosclerosis. J. Biol. Chem. 278, 2461–2468 (2003)

    CAS  PubMed  Google Scholar 

  16. 16

    Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003)

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    Wess, J. G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J. 11, 346–354 (1997)

    CAS  PubMed  Google Scholar 

  18. 18

    Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y. & Shimizu, T. A. G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–624 (1997)

    ADS  CAS  PubMed  Google Scholar 

  19. 19

    Scheer, A., Fanelli, F., Costa, T., De Benedetti, P. G. & Cotecchia, S. Constitutively active mutants of the α1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J. 15, 3566–3578 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Yamauchi, T. et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Med. 13, 332–339 (2007)

    CAS  PubMed  Google Scholar 

  21. 21

    Petersen, K. F. et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 664–671 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999)

    CAS  PubMed  Google Scholar 

  23. 23

    Mootha, V. K. et al. Errα and Gabpa/b specify PGC-1α-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl Acad. Sci. USA 101, 6570–6575 (2004)

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    Berchtold, M. W. et al. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80, 1215–1265 (2000)

    CAS  PubMed  Google Scholar 

  25. 25

    Wu, H. et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19, 1963–1973 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006)

    ADS  CAS  PubMed  Google Scholar 

  27. 27

    Um, S. H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004)

    ADS  CAS  PubMed  Google Scholar 

  28. 28

    Hawley, S. A. et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271, 27879–27887 (1996)

    CAS  PubMed  Google Scholar 

  29. 29

    Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005)

    CAS  PubMed  Google Scholar 

  30. 30

    Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005)

    CAS  PubMed  Google Scholar 

  31. 31

    Jäger, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007)

    ADS  PubMed  Google Scholar 

  32. 32

    Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005)

    ADS  CAS  PubMed  Google Scholar 

  33. 33

    Guarente, L. Sirtuins as potential targets for metabolic syndrome. Nature 444, 868–874 (2006)

    ADS  CAS  PubMed  Google Scholar 

  34. 34

    Tokumitsu, H. et al. STO-609, a specific inhibitor of the Ca2+/calmodulin-dependent protein kinase kinase. J. Biol. Chem. 277, 15813–15818 (2002)

    CAS  PubMed  Google Scholar 

  35. 35

    Tóth, A. et al. Quantitative assessment of [Ca2+]i levels in rat skeletal muscle in vivo . Am. J. Physiol. Heart Circ. Physiol. 275, H1652–H1662 (1998)

    Google Scholar 

  36. 36

    Shkryl, V. M. & Shirokova, N. Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J. Biol. Chem. 281, 1547–1554 (2006)

    CAS  PubMed  Google Scholar 

  37. 37

    Anderson, K. A. et al. Components of a calmodulin-dependent protein kinase cascade. Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase kinase beta. J. Biol. Chem. 273, 31880–31889 (1998)

    CAS  PubMed  Google Scholar 

  38. 38

    Soderling, T. R. The Ca-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24, 232–236 (1999)

    CAS  PubMed  Google Scholar 

  39. 39

    Handschin, C. & Spiegelman, B. M. The role of exercise and PGC1α in inflammation and chronic disease. Nature 454, 463–469 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Handschin, C. et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 282, 30014–30021 (2007)

    CAS  PubMed  Google Scholar 

  41. 41

    Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet. 34, 267–273 (2003)

    ADS  CAS  PubMed  Google Scholar 

  42. 42

    Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA 100, 8466–8471 (2003)

    ADS  CAS  PubMed  Google Scholar 

  43. 43

    Wang, C. et al. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. J. Biol. Chem. 282, 7991–7996 (2007)

    CAS  PubMed  Google Scholar 

  44. 44

    Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948 (2006)

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1transcriptional coactivators. Cell 127, 397–408 (2006)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. M. Spiegelman for critical discussions and reading of the manuscript; T. Yokomizo for discussion and support; A. Tsuchida, K. Hara, Y. Hada, Y. Nio, T. Maki, T. Takazawa, Y. Iwata, M. Kobayashi, S. Kawamoto, K. Kobayashi, K. Hirota, Y. Shiomi, T. Mitsumatsu, L. Hirose, Y. Sea, M. Nakamura and K. Take for technical help and support; and S. Suzuki, K. Miyata, C. Ueda, A. Itoh and A. Okano for technical assistance. This work was supported by Grant-in-aid for Scientific Research (S) (20229008) (to T.K.), (B) (20390254) (to T.Y.), Targeted Proteins Research Program (to T.K.), the Global COE Research Program (to T.K.) and Translational Systems Biology and Medicine Initiative (to T.K.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Affiliations

Authors

Contributions

M.I., M.O.-I., T.Y., K.S., T.N., M.F., M.Y., S.N., R.N., M.T., H.O., N.K., I.T., Y.K.H. and N.Y. performed experiments. T.K. and T.Y. conceived and supervised the study. K.T., T.S. and K.H. supervised the study. T.Y., T.K., M.I. and M.O-I. wrote the paper. All authors interpreted data.

Corresponding authors

Correspondence to Toshimasa Yamauchi or Takashi Kadowaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Results, Supplementary Methods, Supplementary References and Supplementary Figures 1-20 with legends. (PDF 1494 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iwabu, M., Yamauchi, T., Okada-Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature 464, 1313–1319 (2010). https://doi.org/10.1038/nature08991

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing