Review Article | Published:

Non-Abelian states of matter

Nature volume 464, pages 187193 (11 March 2010) | Download Citation

Abstract

Quantum mechanics classifies all elementary particles as either fermions or bosons, and this classification is crucial to the understanding of a variety of physical systems, such as lasers, metals and superconductors. In certain two-dimensional systems, interactions between electrons or atoms lead to the formation of quasiparticles that break the fermion–boson dichotomy. A particularly interesting alternative is offered by 'non-Abelian' states of matter, in which the presence of quasiparticles makes the ground state degenerate, and interchanges of identical quasiparticles shift the system between different ground states. Present experimental studies attempt to identify non-Abelian states in systems that manifest the fractional quantum Hall effect. If such states can be identified, they may become useful for quantum computation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Anyons and the quantum Hall effect — a pedagogical review. Ann. Phys. 323, 204–249 (2008). This paper is a pedagogical introduction to the concept of Abelian and non-Abelian anyons.

  2. 2.

    , , , & Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008). This is a comprehensive review of non-Abelian states of matter and their relevance to quantum computation, and contains an extensive list of references.

  3. 3.

    Das , & Topological quantum computation. Phys. Today 59, 32–38 (2006).

  4. 4.

    Computing with quantum knots. Sci. Am. 4, 57 (2006).

  5. 5.

    Devices based on the fractional quantum Hall effect may fulfill the promise of quantum computing. Phys. Today 58, 21–23 (2005).

  6. 6.

    Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003). This paper discusses the use of anyons for quantum computation.

  7. 7.

    et al. Topological quantum computation. Bull. Am. Math. Soc. 40, 31–38 (2003).

  8. 8.

    , & Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 (2005). This paper proposes a qubit based on the ν = 5/2 state.

  9. 9.

    et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

  10. 10.

    et al. Electron correlation in the second Landau level: a competition between many nearly degenerate quantum phases. Phys. Rev. Lett. 93, 176809 (2004).

  11. 11.

    , , & Insulating and fractional quantum Hall states in the first excited Landau level. Phys. Rev. Lett. 88, 076801 (2002).

  12. 12.

    & Non-Abelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991). This paper introduced the concept of non-Abelian states of matter.

  13. 13.

    Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and px + ipy paired superfluids. Phys. Rev. B 79, 045308 (2009).

  14. 14.

    & 2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states. Nucl. Phys. B. 479, 529–553 (1996).

  15. 15.

    Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001).

  16. 16.

    , & Geometric phases and quantum entanglement as building blocks for non-Abelian quasiparticle statistics. Phys. Rev. B 70, 205338 (2004).

  17. 17.

    & Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000). This paper puts forward a composite fermion theory of the ν = 5/2 state.

  18. 18.

    & Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level. Phys. Rev. B 59, 8084–8092 (1999). This paper describes a proposed series of non-Abelian quantum Hall states of matter.

  19. 19.

    & String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).

  20. 20.

    Topological order and edge structure of ν = 1/2 quantum Hall state. Phys. Rev. Lett. 70, 355–358 (1993).

  21. 21.

    , & Paired Hall state at half filling. Phys. Rev. Lett. 66, 3205–3208 (1991).

  22. 22.

    Transition from quantum Hall to compressible states in the second Landau level: new light on the ν = 5/2 enigma. Phys. Rev. Lett. 80, 1505–1508 (1998).

  23. 23.

    , & The fractional quantum Hall state at ν = 5/2 and the Moore–Read Pfaffian. Preprint at <> (2008).

  24. 24.

    & Incompressible paired Hall state, stripe order and the composite fermion liquid phase in half-filled Landau levels. Phys. Rev. Lett. 84, 4685–4688 (2000).

  25. 25.

    , & Nature of excitations of the 5/2 fractional quantum Hall effect. Phys. Rev. Lett. 98, 036806 (2007).

  26. 26.

    & Landau level mixing in the ν = 5/2 fractional quantum Hall state. Phys. Rev. B 74, 235319 (2006).

  27. 27.

    , , & Density matrix renormalization group study of incompressible fractional quantum Hall states. Phys. Rev. Lett. 100, 166803 (2008).

  28. 28.

    , & Quantum phases of vortices in rotating Bose–Einstein condensates. Phys. Rev. Lett. 87, 120405 (2001).

  29. 29.

    & Resonantly paired fermionic superfluids. Ann. Phys. 322, 2–119 (2007).

  30. 30.

    & Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008). This paper proposes a setting in which Majorana fermions are created in a hybrid system of a topological insulator and a superconductor.

  31. 31.

    & Probing neutral Majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009).

  32. 32.

    , & Splitting of a Cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 101, 120403 (2008).

  33. 33.

    , , & A generic new platform for topological quantum computation using semiconductor heterostructures. Preprint at <> (2009).

  34. 34.

    Majorana returns. Nature Phys. 5, 614–618 (2009).

  35. 35.

    Composite Fermions (Cambridge Univ. Press, 2007).

  36. 36.

    (ed.) Composite Fermions (World Scientific, 1998).

  37. 37.

    , & Effective field theories for the ν = 5/2 edge. Phys. Rev. B 80, 233302 (2009).

  38. 38.

    & Observable bulk signatures of non-Abelian quantum Hall states. Phys. Rev. Lett. 102, 176807 (2009).

  39. 39.

    & Thermopower as a possible probe of non-Abelian quasiparticle statistics in fractional quantum Hall liquids. Phys. Rev. B 79, 115317 (2009).

  40. 40.

    , & Compressibility of the two-dimensional electron gas: measurements of the zero-field exchange energy and fractional quantum Hall gap. Phys. Rev. B 50, 1760–1778 (1994).

  41. 41.

    et al. Magnetization and energy gaps of a high-mobility 2D electron gas in the quantum limit. Phys. Rev. Lett. 79, 3238–3241 (1997).

  42. 42.

    Chamon, C. de C., , , & Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

  43. 43.

    et al. A Chern–Simons effective field theory for the Pfaffian quantum Hall state. Nucl. Phys. B 516, 704–718 (1998).

  44. 44.

    & Proposed experiments to probe the non-Abelian ν = 5/2 quantum Hall state. Phys. Rev. Lett. 96, 016802 (2006).

  45. 45.

    , & Detecting non-Abelian statistics in the ν = 5/2 fractional quantum Hall state. Phys. Rev. Lett. 96, 016803 (2006).

  46. 46.

    , & Probing non-Abelian statistics with quasiparticle interferometry. Phys. Rev. Lett. 97, 016401 (2006).

  47. 47.

    , , & Experimental signatures of non-Abelian statistics in clustered quantum Hall states. Phys. Rev. B 79, 245305 (2009).

  48. 48.

    & Detecting non-Abelian statistics with an electronic Mach–Zehnder interferometer. Phys. Rev. Lett. 97, 186803 (2006).

  49. 49.

    , , , & Shot noise in an anyonic Mach–Zehnder interferometer. Phys. Rev. B 76, 085333 (2007).

  50. 50.

    et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

  51. 51.

    et al. Direct measurement of the coherence length of edge states in the integer quantum Hall regime. Phys. Rev. Lett. 100, 126802 (2008).

  52. 52.

    & Edge excitations of paired fractional quantum Hall states. Phys. Rev. B 53, 13559–13582 (1996).

  53. 53.

    , & Edge states and tunneling of non-Abelian quasiparticles in the ν = 5/2 quantum Hall state and p + ip superconductors. Phys. Rev. B. 75, 045317 (2007).

  54. 54.

    , & Multi-channel Kondo models in non-Abelian quantum Hall droplets. Phys. Rev. Lett. 101, 176801 (2008).

  55. 55.

    & Charge-statistics separation and probing non-Abelian states. Phys. Rev. B 78, 161304 (2008).

  56. 56.

    et al. Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state. Nature 452, 829–834 (2008).

  57. 57.

    et al. Quasi-particle properties from tunneling in the ν = 5/2 fractional quantum Hall state. Science 320, 899–902 (2008).

  58. 58.

    , & Quantum transport in electron Fabry–Perot interferometers. Phys. Rev. B 76, 155305 (2007).

  59. 59.

    et al. Distinct signatures for Coulomb blockade and Aharonov–Bohm interference in electronic Fabry–Perot interferometers. Phys. Rev. B 79, 241304 (2009).

  60. 60.

    Superperiods and quantum statistics of Laughlin quasiparticles. Phys. Rev. B 75, 045334 (2007).

  61. 61.

    et al. The role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Preprint at <> (2009).

  62. 62.

    & Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98, 106801 (2007).

  63. 63.

    , & Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations. Proc. Natl Acad. Sci. USA 106, 8853–8858 (2009).

  64. 64.

    , & Alternating e/4 and e/2 period interference oscillations consistent with filling factor 5/2 non-Abelian quasiparticles. Preprint at <> (2009).

  65. 65.

    , , , & Interferometric signature of non-Abelian anyons. Phys. Rev. B 80, 155303 (2009).

  66. 66.

    , , & Bulk-edge coupling in the non-Abelian ν = 5/2 quantum Hall interferometer. Phys. Rev. Lett. 100, 226803 (2008).

  67. 67.

    & Dynamical and scaling properties of ν = 5/2 interferometer. Preprint at <> (2007).

  68. 68.

    , , & Exact solution for bulk-edge coupling in the non-Abelian ν=5/2 quantum Hall interferometer. Phys. Rev. B 80, 155305 (2009).

  69. 69.

    & Odd–even crossover in a non-Abelian ν = 5/2 interferometer. Phys. Rev. B 80, 155304 (2009).

  70. 70.

    , , & Pfaffian and fragmented states at ν = 5/2 in quantum Hall droplets. Phys. Rev. B 78, 195321 (2008).

  71. 71.

    & Inequivalent classes of interference experiments with non-Abelian anyons. Phys. Rev. A 64, 062107 (2001).

  72. 72.

    , , , & Spin polarization of the ν = 5/2 quantum Hall state. Phys. Rev. B 79, 115322 (2009).

  73. 73.

    et al. Contrasting behavior of the ν = 5/2 and 7/3 fractional quantum Hall effect in a tilted field. Phys. Rev. Lett. 101, 186806 (2008).

Download references

Acknowledgements

This work was supported by the US–Israel Binational Science Foundation, the Minerva foundation and Microsoft's Station Q.

Author information

Affiliations

  1. Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel.

    • Ady Stern

Authors

  1. Search for Ady Stern in:

Competing interests

The author declares no competing financial interests.

Reprints and permissions information is available at http://www.nature.com/reprints. Correspondence should be addressed to the author (adiel.stern@weizmann.ac.il).

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nature08915

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing