Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nitrite-driven anaerobic methane oxidation by oxygenic bacteria


Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named ‘Candidatus Methylomirabilis oxyfera’, was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that ‘M. oxyfera’ bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Significant pathways of Methylomirabilis oxyfera.
Figure 2: Phylogeny of ‘ Methylomirabilis oxyfera ’ pmoA protein sequences.
Figure 3: Coupling of methane oxidation and nitrite reduction in enrichment cultures of ‘ Methylomirabilis oxyfera ’.
Figure 4: Oxygen production from nitrite in ‘ Methylomirabilis oxyfera ’.

Accession codes

Data deposits

Sequencing and proteomic data are deposited at the National Centre for Biotechnology Information under accession numbers FP565575, SRR023516.1, SRR022749.2, GSE18535, SRR022748.2, PSE127 and PSE128.


  1. 1

    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Bodelier, P. L. E. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277 (2004)

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Ettwig, K. F., van Alen, T., van de Pas-Schoonen, K. T., Jetten, M. S. M. & Strous, M. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl. Environ. Microbiol. 75, 3656–3662 (2009)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Hu, S. et al. Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Envir. Microbiol. Rep. 1, 377–384 (2009)

    CAS  Article  Google Scholar 

  6. 6

    Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003)

    Article  PubMed  Google Scholar 

  7. 7

    Thauer, R. K. & Shima, S. Methane as fuel for anaerobic microorganisms. Ann. NY Acad. Sci. 1125, 158–170 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Trotsenko, Y. A. & Murrell, J. C. Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63, 183–229 (2008)

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Krüger, M. et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426, 878–881 (2003)

    ADS  Article  Google Scholar 

  10. 10

    Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334 (2009)

    CAS  Article  Google Scholar 

  11. 11

    Ettwig, K. F. et al. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea . Environ. Microbiol. 10, 3164–3173 (2008)

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Wilmes, P., Simmons, S. L., Denef, V. J. & Banfield, J. F. The dynamic genetic repertoire of microbial communities. FEMS Microbiol. Rev. 33, 109–132 (2009)

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Farrer, R. A., Kemen, E., Jones, J. D. G. & Studholme, D. J. De novo assembly of the Pseudomonas syringae pv. syringae B728a genome using Illumina/Solexa short sequence reads. FEMS Microbiol. Lett. 291, 103–111 (2009)

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Dutilh, B. E., Huynen, M. A. & Strous, M. Increasing the coverage of a metapopulation consensus genome by iterative read mapping and assembly. Bioinformatics 25, 2878–2881 (2009)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Heider, J. Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. Curr. Opin. Chem. Biol. 11, 188–194 (2007)

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Chistoserdova, L., Kalyuzhnaya, M. G. & Lidstrom, M. E. C1-transfer modules: from genomics to ecology. ASM News 71, 521–528 (2005)

    Google Scholar 

  18. 18

    Howard, C. S. & Daniels, F. Stability of nitric oxide over a long time interval. J. Phys. Chem. 62, 360–361 (1958)

    CAS  Article  Google Scholar 

  19. 19

    Parvulescu, V. I., Grange, P. & Delmon, B. Catalytic removal of NO. Catal. Today 46, 233–316 (1998)

    CAS  Article  Google Scholar 

  20. 20

    van Ginkel, C. G., Rikken, G. B., Kroon, A. G. M. & Kengen, S. W. M. Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch. Microbiol. 166, 321–326 (1996)

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Bab-Dinitz, E., Shmuely, H., Maupin-Furlow, J., Eichler, J. & Shaanan, B. Haloferax volcanii PitA: an example of functional interaction between the Pfam chlorite dismutase and antibiotic biosynthesis monooxygenase families? Bioinformatics 22, 671–675 (2006)

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Zumft, W. G. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme–copper oxidase type. J. Inorg. Biochem. 99, 194–215 (2005)

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Zumft, W. G. & Kroneck, P. M. H. in Advances in Microbial Physiology Vol. 52 (ed. Poole, R. K.) 107–227 (Academic, 2007)

    Google Scholar 

  24. 24

    Prior, S. D. & Dalton, H. Acetylene as a suicide substrate and active-site probe for methane monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 29, 105–109 (1985)

    CAS  Article  Google Scholar 

  25. 25

    Kool, D. M., Wrage, N., Oenema, O., Dolfing, J. & Van Groenigen, J. W. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO3 - and N2O: a review. Rapid Commun. Mass Spectrom. 21, 3569–3578 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  26. 26

    Demicheli, V., Quijano, C., Alvarez, B. & Radi, R. Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide. Free Radic. Biol. Med. 42, 1359–1368 (2007)

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Allen, M. B. & van Niel, C. B. Experiments on bacterial denitrification. J. Bacteriol. 64, 397–412 (1952)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Broda, E. The history of inorganic nitrogen in the biosphere. J. Mol. Evol. 7, 87–100 (1975)

    ADS  CAS  Article  PubMed  Google Scholar 

  29. 29

    Fenchel, T. Origin and Early Evolution of Life (Oxford Univ. Press, 2002)

    Google Scholar 

  30. 30

    Castresana, J. in Respiration in Archaea and Bacteria: Diversity of Prokaryotic Electron Transport Carriers Vol. 15 (ed. Zannoni, D.) 1–14 (Springer, 2004)

    Google Scholar 

  31. 31

    Ducluzeau, A. L. et al. Was nitric oxide the first deep electron sink? Trends Biochem. Sci. 34, 9–15 (2009)

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Chapman, D. J. & Schopf, J. W. Biological and Biochemical Effects of the Development of an Aerobic Environment (Princeton Univ. Press, 1983)

    Google Scholar 

  33. 33

    Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006)

    CAS  Article  Google Scholar 

  34. 34

    Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A. & Freedman, R. Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. Planets 105, 11981–11990 (2000)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Hayes, J. M. in Earth’s Earliest Biosphere (ed. Schopf, J. W.) 291–301 (Princeton Univ. Press, 1983)

    Google Scholar 

  36. 36

    Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Vallenet, D. et al. MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res. 34, 53–65 (2006)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469 (1996)

    ADS  CAS  Article  PubMed  Google Scholar 

  40. 40

    Andersen, K., Kjær, T. & Revsbech, N. P. An oxygen insensitive microsensor for nitrous oxide. Sens. Actuators B Chem. 81, 42–48 (2001)

    CAS  Article  Google Scholar 

  41. 41

    Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478 (1989)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Schreiber, F., Polerecky, L. & de Beer, D. Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments. Anal. Chem. 80, 1152–1158 (2008)

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Gordon, D., Abajian, C. & Green, P. Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202 (1998)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Hakemian, A. S. & Rosenzweig, A. C. The biochemistry of methane oxidation. Annu. Rev. Biochem. 76, 223–241 (2007)

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Stoecker, K. et al. Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc. Natl Acad. Sci. USA 103, 2363–2367 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  46. 46

    Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003)

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Ishihama, Y., Rappsilber, J., Andersen, J. S. & Mann, M. Microcolumns with self-assembled particle frits for proteomics. J. Chromatogr. A 979, 233–239 (2002)

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Weatherly, D. B. et al. A heuristic method for assigning a false-discovery rate for protein identifications from Mascot database search results. Mol. Cell. Proteomics 4, 762–772 (2005)

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Raghoebarsing, A. A. New Directions in Microbial Methane Oxidation. PhD thesis, Radboud Univ. Nijmegen (2006)

    Google Scholar 

  50. 50

    Friedman, S. H., Massefski, W. & Hollocher, T. C. Catalysis of intermolecular oxygen atom transfer by nitrite dehydrogenase of Nitrobacter agilis . J. Biol. Chem. 261, 538–543 (1986)

    Google Scholar 

  51. 51

    McIlvin, M. R. & Altabet, M. A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 77, 5589–5595 (2005)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank F. Stams and N. Tan for sharing their ideas on NO decomposition; D. Speth and L. Russ for pilot experiments; N. Kip for providing M. acidophilus cultures; A. Pierik for electron paramagnetic resonance analysis; G. Klockgether and G. Lavik for technical assistance; and B. Kartal, J. Keltjens, A. Pol, J. van de Vossenberg and F. Widdel for helpful discussions. M.M.M.K., F.S., J.Z. and D.d.B. were supported by the Max Planck Society, M.S.M.J. by European Research Council grant 232937, M.S., K.F.E. and M.K.B. by a Vidi grant to M.S. from the Netherlands Organisation for Scientific Research (NWO), and M.L.W. and B.D. by a Horizon grant (050-71-058) from NWO.

Author Contributions Genome sequencing and assembly from enrichment culture ‘Twente’ was performed by D.L.P., E.P., S.M. and J.W. M.S., E.M.J.-M., K.-J.F. and H.S. performed the sequencing and initial assembly of sequence from enrichment culture ‘Ooij’. Mapping of sequences from enrichment culture ‘Ooij’ to ‘Twente’ was performed by B.E.D. and M.S. B.E.D. and E.P. performed SNP and coverage analyses. Genome annotation and phylogenetic analysis were conducted by M.K.B. H.J.M.O.d.C. provided support with alignments. Sample preparation for proteome analysis was performed by M.K.B. and M.W., with LC–MS/MS and protein identification performed by J.G. and H.J.C.T.W. Material for transcriptome analysis was prepared by T.v.A. and F.L., with sequencing performed by E.M.J.-M., K.-J.F. and H.S. Continuous cultures were set up and maintained by K.F.E. and K.T.v.d.P.-S. Experiments for nitrogenous intermediates were designed and performed by K.F.E., M.M.M.K., F.S., D.d.B. and J.Z., and those for methane activation were designed and performed by K.F.E. Pilot experiments were conducted by K.F.E., F.L., M.K.B., K.T.v.d.P.-S, T.A. and M.S. K.F.E., M.K.B., M.S.M.J. and M.S. conceived the research. K.F.E., M.K.B. and M.S. wrote the paper with input from all other authors.

Author information



Corresponding authors

Correspondence to Katharina F. Ettwig or Marc Strous.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-5 and Supplementary Figures 1-7 with legends. (PDF 530 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ettwig, K., Butler, M., Le Paslier, D. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing