Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zscan4 regulates telomere elongation and genomic stability in ES cells

Abstract

Exceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for two-cell embryo and ES cells. Here we show that Zscan4 is involved in telomere maintenance and long-term genomic stability in ES cells. Only 5% of ES cells express Zscan4 at a given time, but nearly all ES cells activate Zscan4 at least once during nine passages. The transient Zscan4-positive state is associated with rapid telomere extension by telomere recombination and upregulation of meiosis-specific homologous recombination genes, which encode proteins that are colocalized with ZSCAN4 on telomeres. Furthermore, Zscan4 knockdown shortens telomeres, increases karyotype abnormalities and spontaneous sister chromatid exchange, and slows down cell proliferation until reaching crisis by passage eight. Together, our data show a unique mode of genome maintenance in ES cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zscan4 is transiently expressed in ES cells.
Figure 2: Characterization of Zscan4 -knockdown cells.
Figure 3: Zscan4 regulates telomere length.
Figure 4: Zscan4 promotes T-SCE but inhibits spontaneous SCE in non-telomeric regions.
Figure 5: ZSCAN4 forms foci on telomeres along with meiosis-specific homologous recombination mediators.

Similar content being viewed by others

References

  1. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981)

    Article  ADS  CAS  Google Scholar 

  2. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981)

    Article  ADS  CAS  Google Scholar 

  3. Yoshikawa, T. et al. High-throughput screen for genes predominantly expressed in the ICM of mouse blastocysts by whole mount in situ hybridization. Gene Expr. Patterns 6, 213–224 (2006)

    Article  CAS  Google Scholar 

  4. Niwa, H. How is pluripotency determined and maintained? Development 134, 635–646 (2007)

    Article  CAS  Google Scholar 

  5. Suda, Y., Suzuki, M., Ikawa, Y. & Aizawa, S. Mouse embryonic stem cells exhibit indefinite proliferative potential. J. Cell. Physiol. 133, 197–201 (1987)

    Article  CAS  Google Scholar 

  6. Rebuzzini, P., Neri, T., Zuccotti, M., Redi, C. A. & Garagna, S. Chromosome number variation in three mouse embryonic stem cell lines during culture. Cytotechnology 58, 17–23 (2008)

    Article  Google Scholar 

  7. Longo, L., Bygrave, A., Grosveld, F. G. & Pandolfi, P. P. The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res. 6, 321–328 (1997)

    Article  CAS  Google Scholar 

  8. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993)

    Article  ADS  CAS  Google Scholar 

  9. Cervantes, R. B., Stringer, J. R., Shao, C., Tischfield, J. A. & Stambrook, P. J. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc. Natl Acad. Sci. USA 99, 3586–3590 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Blelloch, R. H. et al. Nuclear cloning of embryonal carcinoma cells. Proc. Natl Acad. Sci. USA 101, 13985–13990 (2004)

    ADS  CAS  Google Scholar 

  11. Brimble, S. N. et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 13, 585–597 (2004)

    Article  CAS  Google Scholar 

  12. Falco, G. et al. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539–550 (2007)

    Article  CAS  Google Scholar 

  13. Carter, M. G. et al. An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells. Gene Expr. Patterns 8, 181–198 (2008)

    Article  CAS  Google Scholar 

  14. Storm, M. P. et al. Characterization of the phosphoinositide 3-kinase-dependent transcriptome in murine embryonic stem cells: identification of novel regulators of pluripotency. Stem Cells 27, 764–775 (2009)

    Article  CAS  Google Scholar 

  15. Edelstein, L. C. & Collins, T. The SCAN domain family of zinc finger transcription factors. Gene 359, 1–17 (2005)

    Article  CAS  Google Scholar 

  16. Feil, R., Wagner, J., Metzger, D. & Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237, 752–757 (1997)

    Article  CAS  Google Scholar 

  17. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

    Article  CAS  Google Scholar 

  18. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985)

    CAS  Google Scholar 

  19. Nishiyama, A. et al. Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell 5, 420–433 (2009)

    Article  CAS  Google Scholar 

  20. Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47 (2002)

    Article  Google Scholar 

  21. Callicott, R. J. & Womack, J. E. Real-time PCR assay for measurement of mouse telomeres. Comp. Med. 56, 17–22 (2006)

    CAS  Google Scholar 

  22. Poon, S. S., Martens, U. M., Ward, R. K. & Lansdorp, P. M. Telomere length measurements using digital fluorescence microscopy. Cytometry 36, 267–278 (1999)

    Article  CAS  Google Scholar 

  23. Liu, L. et al. Telomere lengthening early in development. Nature Cell Biol. 9, 1436–1441 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Bailey, S. M., Goodwin, E. H., Meyne, J. & Cornforth, M. N. CO-FISH reveals inversions associated with isochromosome formation. Mutagenesis 11, 139–144 (1996)

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres. Proc. Natl Acad. Sci. USA 102, 10256–10260 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Dronkert, M. L. et al. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol. Cell. Biol. 20, 3147–3156 (2000)

    Article  CAS  Google Scholar 

  27. Tateishi, S. et al. Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells. Mol. Cell. Biol. 23, 474–481 (2003)

    Article  CAS  Google Scholar 

  28. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88, 375–384 (1997)

    Article  CAS  Google Scholar 

  29. Mahadevaiah, S. K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nature Genet. 27, 271–276 (2001)

    Article  CAS  Google Scholar 

  30. Reinholdt, L. G. & Schimenti, J. C. Mei1 is epistatic to Dmc1 during mouse meiosis. Chromosoma 114, 127–134 (2005)

    Article  CAS  Google Scholar 

  31. Revenkova, E. et al. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nature Cell Biol. 6, 555–562 (2004)

    Article  CAS  Google Scholar 

  32. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995)

    Article  ADS  CAS  Google Scholar 

  33. Tanaka, T. S. Transcriptional heterogeneity in mouse embryonic stem cells. Reprod. Fertil. Dev. 21, 67–75 (2009)

    Article  CAS  Google Scholar 

  34. Toyooka, Y., Shimosato, D., Murakami, K., Takahashi, K. & Niwa, H. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135, 909–918 (2008)

    Article  CAS  Google Scholar 

  35. Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008)

    Article  CAS  Google Scholar 

  36. Bailey, S. M., Brenneman, M. A. & Goodwin, E. H. Frequent recombination in telomeric DNA may extend the proliferative life of telomerase-negative cells. Nucleic Acids Res. 32, 3743–3751 (2004)

    Article  CAS  Google Scholar 

  37. Niida, H. et al. Telomere maintenance in telomerase-deficient mouse embryonic stem cells: characterization of an amplified telomeric DNA. Mol. Cell. Biol. 20, 4115–4127 (2000)

    Article  CAS  Google Scholar 

  38. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997)

    Article  CAS  Google Scholar 

  39. Cesare, A. J. & Reddel, R. R. Telomere uncapping and alternative lengthening of telomeres. Mech. Ageing Dev. 129, 99–108 (2008)

    Article  CAS  Google Scholar 

  40. De Boeck, G., Forsyth, R. G., Praet, M. & Hogendoorn, P. C. Telomere-associated proteins: cross-talk between telomere maintenance and telomere-lengthening mechanisms. J. Pathol. 217, 327–344 (2009)

    Article  CAS  Google Scholar 

  41. Bryan, T. M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R. R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995)

    Article  CAS  Google Scholar 

  42. Gonzalo, S. et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biol. 8, 416–424 (2006)

    Article  CAS  Google Scholar 

  43. Laud, P. R. et al. Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev. 19, 2560–2570 (2005)

    Article  CAS  Google Scholar 

  44. Ding, H. et al. Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117, 873–886 (2004)

    Article  CAS  Google Scholar 

  45. Aiba, K. et al. Defining developmental potency and cell lineage trajectories by expression profiling of differentiating mouse embryonic stem cells. DNA Res. 16, 73–80 (2009)

    Article  CAS  Google Scholar 

  46. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  Google Scholar 

  47. Olson, L. E. et al. Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res. 63, 6602–6606 (2003)

    CAS  Google Scholar 

  48. Masui, S. et al. An efficient system to establish multiple embryonic stem cell lines carrying an inducible expression unit. Nucleic Acids Res. 33, e43 (2005)

    Article  ADS  Google Scholar 

  49. Goodwin, E. & Meyne, J. Strand-specific FISH reveals orientation of chromosome 18 alphoid DNA. Cytogenet. Cell Genet. 63, 126–127 (1993)

    Article  CAS  Google Scholar 

  50. Perry, P. & Wolff, S. New Giemsa method for the differential staining of sister chromatids. Nature 251, 156–158 (1974)

    Article  ADS  CAS  Google Scholar 

  51. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2003)

    Google Scholar 

  52. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ T method. Methods 25, 402–408 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Hamatani, Y. Nakatake, M. Monti, L. Xin, B. Binder and A. A. Sharov for discussion; Y. Piao, C. Nguyen, D. Eckley, I. Goldberg, D. Dudekula and I. Stanghellini for technical assistance; P. Soriano for providing ROSA26-floxed LacZ cells; and H. Niwa for providing ROSA-tet-inducible system. This work was entirely supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health.

Author Contributions M.Z., G.F., L.V.S., A.N., M.T., S.-L.L., C.A.S., H.G.H., H.-T.Y., F.E.I. and R.P.W. designed and performed experiments. M.S.H.K. conceived and supervised the project. M.Z. and M.S.H.K. wrote the manuscript. All authors participated in the discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru S. H. Ko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-15 with legends. (PDF 6045 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalzman, M., Falco, G., Sharova, L. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464, 858–863 (2010). https://doi.org/10.1038/nature08882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08882

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing