A trapped single ion inside a Bose–Einstein condensate

Abstract

Improved control of the motional and internal quantum states of ultracold neutral atoms and ions has opened intriguing possibilities for quantum simulation and quantum computation. Many-body effects have been explored with hundreds of thousands of quantum-degenerate neutral atoms1, and coherent light–matter interfaces have been built2,3. Systems of single or a few trapped ions have been used to demonstrate universal quantum computing algorithms4 and to search for variations of fundamental constants in precision atomic clocks5. Until now, atomic quantum gases and single trapped ions have been treated separately in experiments. Here we investigate whether they can be advantageously combined into one hybrid system, by exploring the immersion of a single trapped ion into a Bose–Einstein condensate of neutral atoms. We demonstrate independent control over the two components of the hybrid system, study the fundamental interaction processes and observe sympathetic cooling of the single ion by the condensate. Our experiment calls for further research into the possibility of using this technique for the continuous cooling of quantum computers6. We also anticipate that it will lead to explorations of entanglement in hybrid quantum systems and to fundamental studies of the decoherence of a single, locally controlled impurity particle coupled to a quantum environment7,8.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental apparatus.
Figure 2: Atom loss from a Bose–Einstein condensate due to collisions with a single ion.
Figure 3: Time-resolved sympathetic cooling of a single ion.
Figure 4: Inelastic atom–ion collisions.

References

  1. 1

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Brennecke, F. et al. Cavity QED with a Bose–Einstein condensate. Nature 450, 268–271 (2007)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Colombe, Y. et al. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Blatt, R. & Wineland, D. J. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Daley, A. J., Fedichev, P. O. & Zoller, P. Single-atom cooling by superfluid immersion: a nondestructive method for qubits. Phys. Rev. A 69, 022306 (2004)

    ADS  Article  Google Scholar 

  7. 7

    Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Recati, A., Fedichev, P. O., Zwerger, W., von Delft, J. & Zoller, P. Atomic quantum dots coupled to a reservoir of a superfluid Bose-Einstein condensate. Phys. Rev. Lett. 94, 040404 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Yarmchuk, E. J., Gordon, M. J. V. & Packard, R. E. Observation of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214–217 (1979)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Abrikosov, A. & Gorkov, L. Contribution to the theory of superconducting alloys with paramagnetic impurities. Sov. Phys. JETP 12, 1243–1253 (1961)

    Google Scholar 

  11. 11

    Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F. & Eigler, D. M. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997)

    CAS  Article  Google Scholar 

  12. 12

    Pan, S. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Makarov, O. P., Côté, R., Michels, H. & Smith, W. W. Radiative charge-transfer lifetime of the excited state of NaCa+. Phys. Rev. A 67, 042705 (2003)

    ADS  Article  Google Scholar 

  14. 14

    Côté, R., Kharchenko, V. & Lukin, M. D. Mesoscopic molecular ions in Bose-Einstein condensates. Phys. Rev. Lett. 89, 093001 (2002)

    ADS  Article  Google Scholar 

  15. 15

    Massignan, P., Pethick, C. J. & Smith, H. Static properties of positive ions in atomic Bose-Einstein condensates. Phys. Rev. A 71, 023606 (2005)

    ADS  Article  Google Scholar 

  16. 16

    Goold, J., Doerk-Bending, H., Calarco, T. & Busch, T. Ion induced density bubble in a strongly correlated one dimensional gas. Preprint at 〈http://arxiv1.library.cornell.edu/abs/0908.3179〉 (2009)

  17. 17

    Kollath, C., Köhl, M. & Giamarchi, T. Scanning tunneling microscopy for ultracold atoms. Phys. Rev. A 76, 063602 (2007)

    ADS  Article  Google Scholar 

  18. 18

    Sherkunov, Y., Muzykantskii, B., d’Ambrumenil, N. & Simons, B. D. Probing ultracold Fermi atoms with a single ion. Phys. Rev. A 79, 023604 (2009)

    ADS  Article  Google Scholar 

  19. 19

    Idziaszek, Z., Calarco, T. & Zoller, P. Controlled collisions of a single atom and an ion guided by movable trapping potentials. Phys. Rev. A 76, 033409 (2007)

    ADS  Article  Google Scholar 

  20. 20

    Côté, R. & Dalgarno, A. Ultracold atom-ion collisions. Phys. Rev. A 62, 012709 (2000)

    ADS  Article  Google Scholar 

  21. 21

    Idziaszek, Z., Calarco, T., Julienne, P. S. & Simoni, A. Quantum theory of ultracold atom-ion collisions. Phys. Rev. A 79, 010702 (2009)

    ADS  Article  Google Scholar 

  22. 22

    Soldán, P. & Hutson, J. M. Interaction of NH(X3Σ-) molecules with rubidium atoms: implications for sympathetic cooling and the formation of extremely polar molecules. Phys. Rev. Lett. 92, 163202 (2004)

    ADS  Article  Google Scholar 

  23. 23

    Treutlein, P., Hunger, D., Camerer, S., Hänsch, T. W. & Reichel, J. Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip. Phys. Rev. Lett. 99, 140403 (2007)

    ADS  Article  Google Scholar 

  24. 24

    Larson, D. J., Bergquist, J. C., Bollinger, J. J., Itano, W. M. & Wineland, D. J. Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett. 57, 70–73 (1986)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Palzer, S., Zipkes, C., Sias, C. & Köhl, M. Quantum transport through a Tonks-Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009)

    ADS  Article  Google Scholar 

  26. 26

    Major, F. G. & Dehmelt, H. G. Exchange-collision technique for the rf spectroscopy of stored ions. Phys. Rev. 170, 91–107 (1968)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Grier, A. T., Cetina, M., Oručević, F. & Vuletić, V. Observation of cold collisions between trapped ions and trapped atoms. Phys. Rev. Lett. 102, 223201 (2009)

    ADS  Article  Google Scholar 

  28. 28

    DeVoe, R. G. Power-law distributions for a trapped ion interacting with a classical buffer gas. Phys. Rev. Lett. 102, 063001 (2009)

    ADS  Article  Google Scholar 

  29. 29

    Sun, J., Rambow, O. & Si, Q. Orthogonality catastrophe in Bose-Einstein condensates. Preprint at 〈http://arxiv.org/abs/cond-mat/0404590〉 (2004)

  30. 30

    Balzer, C. et al. Electrodynamically trapped Yb+ ions for quantum information processing. Phys. Rev. A 73, 041407 (2006)

    ADS  Article  Google Scholar 

  31. 31

    Berkeland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 5025–5033 (1998)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Epstein, R. J. et al. Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007)

    ADS  Article  Google Scholar 

  33. 33

    Wesenberg, J. H. et al. Fluorescence during Doppler cooling of a single trapped atom. Phys. Rev. A 76, 053416 (2007)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Cooper, C. Kollath, D. Lucas, D. Moehring, E. Peik and C. Wunderlich for discussions. We acknowledge support from the Engineering and Physical Sciences Research Council, the European Research Council (grant number 240335) and the Herchel Smith Fund (C.S.).

Author Contributions All authors contributed to the design, to data acquisition and to the interpretation of the presented work. C.Z. and S.P. contributed equally to the construction of the apparatus and to the acquisition of the data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Köhl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zipkes, C., Palzer, S., Sias, C. et al. A trapped single ion inside a Bose–Einstein condensate. Nature 464, 388–391 (2010). https://doi.org/10.1038/nature08865

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.