Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception


Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, such as allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke)1,2,3. Diverse animals, from insects to humans, find reactive electrophiles aversive1,2,3, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that Drosophila TRPA1 (Transient receptor potential A1), the Drosophila melanogaster orthologue of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologues are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate that invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose that human pain perception relies on an ancient chemical sensor conserved across 500 million years of animal evolution.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Drosophila TrpA1 mediates gustatory responses to reactive electrophiles.
Figure 2: Drosophila TrpA1 functions in chemosensors.
Figure 3: Insect TRPA1s are reactive electrophile sensors.
Figure 4: TRPA phylogeny.


  1. Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bessac, B. F., Jordt, S. E. & Breathtaking, T. R. P. Channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology 23, 360–370 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. Eisner, T. in Chemical Ecology (eds Sondheimer, E. & Simeone, J. B.) 157–218 (Academic, 1970)

    Book  Google Scholar 

  4. Thorne, N., Chromey, C., Bray, S. & Amrein, H. Taste perception and coding in Drosophila . Curr. Biol. 14, 1065–1079 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Z., Singhvi, A., Kong, P. & Scott, K. Taste representations in the Drosophila brain. Cell 117, 981–991 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Hinman, A., Chuang, H. H., Bautista, D. M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA 103, 19564–19568 (2006)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  11. Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Sokabe, T., Tsujiuchi, S., Kadowaki, T. & Tominaga, M. Drosophila painless is a Ca2+-requiring channel activated by noxious heat. J. Neurosci. 28, 9929–9938 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenzweig, M., Kang, K. & Garrity, P. A. Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster . Proc. Natl Acad. Sci. USA 105, 14668–14673 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  14. Al-Anzi, B., Tracey, W. D. & Benzer, S. Response of Drosophila to wasabi is mediated by painless, the fly homolog of mammalian TRPA1/ANKTM1. Curr. Biol. 16, 1034–1040 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. Gendre, N. et al. Integration of complex larval chemosensory organs into the adult nervous system of Drosophila . Development 131, 83–92 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Hamada, F. N. et al. An internal thermal sensor controlling temperature preference in Drosophila . Nature 454, 217–220 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  17. Xiao, B. et al. Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci. 28, 9640–9651 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Talavera, K. et al. Nicotine activates the chemosensory cation channel TRPA1. Nature Neurosci. 12, 1293–1299 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. Kindt, K. S. et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nature Neurosci. 10, 568–577 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Guindon, S., Delsuc, F., Dufayard, J. F. & Gascuel, O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol. 537, 113–137 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    CAS  PubMed  Google Scholar 

  23. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295–301 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  25. Nakagawa, T. & Vosshall, L. B. Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr. Opin. Neurobiol. 19, 284–292 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gomes, R., Meek, M. E. & Eggleton, M. Concise International Chemical Assessment Document No 43 (World Health Organization, Geneva, 2002)

    Google Scholar 

  27. Viswanath, V. et al. Opposite thermosensor in fruitfly and mouse. Nature 423, 822–823 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  28. Pulver, S. R., Pashkovski, S. L., Hornstein, N. J., Garrity, P. A. & Griffith, L. C. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 101, 3075–3088 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  29. Do, C. B., Mahabhashyam, M. S., Brudno, M. & Batzoglou, S. ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res. 15, 330–340 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) version 4 (Sinauer Associates, Sunderland, MA, 2003)

    Google Scholar 

  31. Calleja, M., Moreno, E., Pelaz, S. & Morata, G. Visualization of gene expression in living adult Drosophila. Science 274, 252–255 (1996)

    Article  CAS  ADS  PubMed  Google Scholar 

  32. Joiner Ml, A. & Griffith, L. C. CaM kinase II and visual input modulate memory formation in the neuronal circuit controlling courtship conditioning. J. Neurosci. 17, 9384–9391 (1997)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dunipace, L., Meister, S., McNealy, C. & Amrein, H. Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol. 11, 822–835 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. Tracey, W. D., Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell 113, 261–273 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Rosenzweig, M. et al. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 19, 419–424 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview version 2: a multiple sequence alignment and analysis workbench. Bioinformatics 25, 1189–1191 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Livingstone, C. D. & Barton, G. J. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput. Applic. Biosci. 9, 745–756 (1993)

    CAS  Google Scholar 

  38. Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references


We thank H. Amrein, G. Boekh, K. Scott, D. Tracey and Bloomington Stock center for flies, C. Miller-Patterson and D. Zeiger for assistance, and members of the Garrity laboratory, J. P. Garrity, L. Huang, E. Marder, S. Nelson, G. Turrigiano and M. Rosbash for comments. This work was supported by grants from the NIMH (R21 MH080206, P.A.G.; RO1 MH067284, L.C.G.), NINDS (PO1 NS044232), and the Royal Society (Newton International Fellowship, S.R.P.).

Author Contributions K.K., S.R.P., V.C.P., D.L.T. and P.A.G. designed experiments. K.K. performed molecular genetics, behaviour and oocyte physiology, S.R.P. performed neuromuscular junction electrophysiology. E.C.C. assisted with behaviour, D.L.T., V.C.P. and P.A.G. performed bioinformatics, and K.K. and P.A.G. wrote the paper with assistance from S.R.P., V.C.P., L.C.G. and D.L.T.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paul A. Garrity.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-9 with Legends. (PDF 2749 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kang, K., Pulver, S., Panzano, V. et al. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464, 597–600 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing