A computational model of teeth and the developmental origins of morphological variation


The relationship between the genotype and the phenotype, or the genotype–phenotype map, is generally approached with the tools of multivariate quantitative genetics and morphometrics1,2,3,4. Whereas studies of development5,6,7 and mathematical models of development4,8,9,10,11,12 may offer new insights into the genotype–phenotype map, the challenge is to make them useful at the level of microevolution. Here we report a computational model of mammalian tooth development that combines parameters of genetic and cellular interactions to produce a three-dimensional tooth from a simple tooth primordia. We systematically tinkered with each of the model parameters to generate phenotypic variation and used geometric morphometric analyses to identify, or developmentally ordinate, parameters best explaining population-level variation of real teeth. To model the full range of developmentally possible morphologies, we used a population sample of ringed seals (Phoca hispida ladogensis)13. Seal dentitions show a high degree of variation, typically linked to the lack of exact occlusion13,14,15,16. Our model suggests that despite the complexity of development and teeth, there may be a simple basis for dental variation. Changes in single parameters regulating signalling during cusp development may explain shape variation among individuals, whereas a parameter regulating epithelial growth may explain serial, tooth-to-tooth variation along the jaw. Our study provides a step towards integrating the genotype, development and the phenotype.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A model integrating gene networks and tissue mechanics.
Figure 2: Shape of variation in real and in silico seal teeth.
Figure 3: Variation in cusp position and number implicate the same patterning kernel parameters.
Figure 4: Serial tooth-to-tooth variation implicates a cellular parameter.


  1. 1

    Roff, D. A. A centennial celebration for quantitative genetics. Evolution 61, 1017–1032 (2007)

    Article  PubMed  Google Scholar 

  2. 2

    Zeng, Z. B. QTL mapping and the genetic basis of adaptation: recent developments. Genetica 123, 25–37 (2005)

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Wagner, G. P. et al. Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature 452, 470–472 (2008)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. 4

    Polly, P. D. Developmental dynamics and G-matrices: can morphometric spaces be used to model phenotypic evolution? Evol. Biol. 35, 83–96 (2008)

    Article  Google Scholar 

  5. 5

    Prud'homme, B., Gompel, N. & Carroll, S. B. Emerging principles of regulatory evolution. Proc. Natl Acad. Sci. USA 104, 8605–8612 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  6. 6

    McGregor, A. P. et al. Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448, 587–590 (2007)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Miller, C. T. et al. cis-Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131, 1179–1189 (2007)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Salazar-Ciudad, I., Newman, S. A. & Solé, R. V. Phenotypic and dynamical transitions in model genetic networks. I. Emergence of patterns and genotype-phenotype relationships. Evol. Dev. 3, 84–94 (2001)

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Harris, M. P., Williamson, S., Fallon, J. F., Meinhardt, H. & Prum, R. O. Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proc. Natl Acad. Sci. USA 102, 11734–11739 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  10. 10

    Evans, T. M. & Marcus, J. M. A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination. Evol. Dev. 8, 273–283 (2006)

    Article  PubMed  Google Scholar 

  11. 11

    Kavanagh, K. D., Evans, A. R. & Jernvall, J. Predicting evolutionary patterns of mammalian teeth from development. Nature 449, 427–432 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Nahmad, M., Glass, L. & Abouheif, E. The dynamics of developmental system drift in the gene network underlying wing polyphenism in ants: a mathematical model. Evol. Dev. 10, 360–374 (2008)

    Article  PubMed  Google Scholar 

  13. 13

    Jernvall, J. Linking development with generation of novelty in mammalian teeth. Proc. Natl Acad. Sci. USA 97, 2641–2645 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  14. 14

    Lönnberg, E. Några egendomliga variationer i tanduppsättningen hos vikaren, Phoca hispida . Fauna och Flora 18, 116–126 (1923)

    Google Scholar 

  15. 15

    Cruwys, L. & Friday, A. Visible supernumerary teeth in pinnipeds. Polar Rec. 42, 83–85 (2006)

    Article  Google Scholar 

  16. 16

    Miller, E. H. et al. Variation and integration of the simple mandibular postcanine dentition in two species of phocid seal. J. Mamm. 88, 1325–1334 (2007)

    Article  Google Scholar 

  17. 17

    Jernvall, J., Keränen, S. V. E. & Thesleff, I. Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proc. Natl Acad. Sci. USA 97, 14444–14448 (2000)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kassai, Y. et al. Regulation of mammalian tooth cusp patterning by ectodin. Science 309, 2067–2070 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  19. 19

    Salazar-Ciudad, I. & Jernvall, J. A gene network model accounting for development and evolution of mammalian teeth. Proc. Natl Acad. Sci. USA 99, 8116–8120 (2002)

    ADS  CAS  Article  PubMed  Google Scholar 

  20. 20

    Osborn, J. W. A model of growth restraints to explain the development and evolution of tooth shapes in mammals. J. Theor. Biol. 255, 338–343 (2008)

    Article  PubMed  Google Scholar 

  21. 21

    Forgacs, G. & Newman, S. A. Biological Physics of the Developing Embryo (Cambridge Univ. Press, 2005)

    Google Scholar 

  22. 22

    Keller, R. Mechanisms of elongation in embryogenesis. Development 133, 2291–2302 (2006)

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Kettunen, P. et al. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev. Dyn. 219, 322–332 (2000)

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Rybczynski, N., Dawson, M. R. & Tedford, R. H. A semi-aquatic Arctic mammalian carnivore from the Miocene epoch and origin of Pinnipedia. Nature 458, 1021–1024 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  26. 26

    Luo, Z.-X. Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Stewart, B. E., Innes, S. & Stewart, R. E. A. Mandibular dental ontogeny of ringed seals (Phoca hispida). Mar. Mamm. Sci. 14, 221–231 (1998)

    Article  Google Scholar 

  28. 28

    Fraser, G. J. et al. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol. 7, e1000031 (2009)

    Article  PubMed Central  Google Scholar 

  29. 29

    Buchanan, A. V., Sholtis, S., Richtsmeier, J. & Weiss, K. M. What are genes “for” or where are traits “from”? What is the question? Bioessays 31, 198–208 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Darwin, C. On the Origin of Species by Means of Natural Selection 1st edn (Murray, 1859)

    Google Scholar 

  31. 31

    Salazar-Ciudad, I., Garcia-Fernández, J. & Solé, R. V. Gene networks capable of pattern formation: from induction to reaction-diffusion. J. Theor. Biol. 205, 587–603 (2000)

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Jaeger, J. et al. Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–371 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  33. 33

    Newman, T. J. Modeling multi-cellular systems using sub-cellular elements. Math. Biosci. Eng. 2, 611–622 (2005)

    Article  Google Scholar 

  34. 34

    Honda, H., Motosugi, N., Nagai, T., Tanemura, M. & Hiiragi, T. Computer simulation of emerging asymmetry in the mouse blastocyst. Development 135, 1407–1414 (2008)

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Graner, F. & Glazier, J. A. Simulation of biological cell sorting using a two dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992)

    ADS  CAS  Article  PubMed  Google Scholar 

  36. 36

    Hammer, Ø. & Bucher, H. Models for the morphogenesis of the molluscan shell. Lethaia 38, 111–122 (2005)

    Article  Google Scholar 

  37. 37

    Butler, P. M. The ontogeny of molar pattern. Biol. Rev. Camb. Philos. Soc. 31, 30–69 (1956)

    Article  Google Scholar 

  38. 38

    Jernvall, J. Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zool. Fenn. 198, 1–61 (1995)

    Google Scholar 

  39. 39

    Åberg, T., Wozney, J. & Thesleff, I. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev. Dyn. 210, 383–396 (1997)

    Article  PubMed  Google Scholar 

Download references


We thank I. Corfe, A. R. Evans, J. Fierst, M. Fortelius, B. Julia, S. Sova, J. Hakanen, E. Harjunmaa, N. Navarro, I. Thesleff, P. C. Wright and S. Zohdy for comments, discussions, and support on this work, A. Kangas for help in data collection, and M. Hildén and I. Hanski (Finnish Museum of Natural History) for access to collections. This study was supported by the Ramón y Cajal Program (RYC-2007-00149) and the Academy of Finland.

Author Contributions I.S.-C. and J.J. conceived the study; I.S.-C. constructed the computational model and performed computer simulations; J.J. obtained the empirical data; I.S.-C. and J.J. performed quantitative analyses and wrote the paper.

Author information



Corresponding authors

Correspondence to Isaac Salazar-Ciudad or Jukka Jernvall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 with legends, and Supplementary Tables 1-6. (PDF 580 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salazar-Ciudad, I., Jernvall, J. A computational model of teeth and the developmental origins of morphological variation. Nature 464, 583–586 (2010). https://doi.org/10.1038/nature08838

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing