Abstract
One of the greatest challenges in modern physics is to understand the behaviour of an ensemble of strongly interacting particles. A class of quantum many-body systems (such as neutron star matter and cold Fermi gases) share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit1,2. This makes it possible in principle to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap3,4,5, making comparisons with many-body theories developed for uniform gases difficult. Here we develop a general experimental method that yields the equation of state of a uniform gas, as well as enabling a detailed comparison with existing theories6,7,8,9,10,11,12,13,14,15. The precision of our equation of state leads to new physical insights into the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory, and we localize the superfluid transition. For a spin-polarized system16,17,18, our equation of state at zero temperature has a 2 per cent accuracy and extends work19,20 on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons10,18,20,21,22.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Interactions between Fermi polarons in monolayer WS2
Nature Communications Open Access 18 October 2022
-
Second sound in the crossover from the Bose-Einstein condensate to the Bardeen-Cooper-Schrieffer superfluid
Nature Communications Open Access 06 December 2021
-
Linear response of a superfluid Fermi gas inside its pair-breaking continuum
Scientific Reports Open Access 14 August 2020
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Ho, T.-L. Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004)
Inguscio, M., Ketterle, W. & Salomon, C. eds. Proc. Int. School of Physics Enrico Fermi (Course CLXIV, IOS Press, Amsterdam, 2006)
Stewart, J., Gaebler, J., Regal, C. & Jin, D. Potential energy of a 40K Fermi gas in the BCS-BEC crossover. Phys. Rev. Lett. 97, 220406 (2006)
Luo, L., Clancy, B., Joseph, J., Kinast, J. & Thomas, J. Measurement of the entropy and critical temperature of a strongly interacting Fermi gas. Phys. Rev. Lett. 98, 080402 (2007)
Luo, L. & Thomas, J. Thermodynamic measurements in a strongly interacting Fermi gas. J. Low Temp. Phys. 154, 1–29 (2009)
Burovski, E., Prokofev, N., Svistunov, B. & Troyer, M. Critical temperature and thermodynamics of attractive fermions at unitarity. Phys. Rev. Lett. 96, 160402 (2006)
Bulgac, A., Drut, J. & Magierski, P. Spin 1/2 fermions in the unitary regime: a superfluid of a new type. Phys. Rev. Lett. 96, 090404 (2006)
Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of the BCS-BEC crossover. Phys. Rev. A 75, 023610 (2007)
Combescot, R., Alzetto, F. & Leyronas, X. Particle distribution tail and related energy formula. Phys. Rev. A 79, 053640 (2009)
Lobo, C., Recati, A., Giorgini, S. & Stringari, S. Normal state of a polarized Fermi gas at unitarity. Phys. Rev. Lett. 97, 200403 (2006)
Liu, X., Hu, H. & Drummond, P. Virial expansion for a strongly correlated Fermi gas. Phys. Rev. Lett. 102, 160401 (2009)
Rupak, G. Universality in a 2-component Fermi system at finite temperature. Phys. Rev. Lett. 98, 090403 (2007)
Combescot, R., Recati, A., Lobo, C. & Chevy, F. Normal state of highly polarized Fermi gases: simple many-body approaches. Phys. Rev. Lett. 98, 180402 (2007)
Combescot, R. & Giraud, S. Normal state of highly polarized Fermi gases: full many-body treatment. Phys. Rev. Lett. 101, 050404 (2008)
Prokof'ev, N. & Svistunov, B. Fermi-polaron problem: diagrammatic Monte Carlo method for divergent sign-alternating series. Phys. Rev. B 77, 020408 (2008)
Shin, Y., Zwierlein, M., Schunck, C., Schirotzek, A. & Ketterle, W. Observation of phase separation in a strongly interacting imbalanced Fermi gas. Phys. Rev. Lett. 97, 030401 (2006)
Partridge, G., Li, W., Kamar, R., Liao, Y. & Hulet, R. Pairing and phase separation in a polarized Fermi gas. Science 311, 503–505 (2006)
Nascimbene, S. et al. Collective oscillations of an imbalanced Fermi gas: axial compression modes and polaron effective mass. Phys. Rev. Lett. 103, 170402 (2009)
Shin, Y., Schunck, C., Schirotzek, A. & Ketterle, W. Phase diagram of a two-component Fermi gas with resonant interactions. Nature 451, 689–693 (2008)
Shin, Y. Determination of the equation of state of a polarized Fermi gas at unitarity. Phys. Rev. A 77, 041603 (2008)
Chevy, F. Universal phase diagram of a strongly interacting Fermi gas with unbalanced spin populations. Phys. Rev. A 74, 063628 (2006)
Schirotzek, A., Wu, C.-H., Sommer, A. & Zwierlein, M. W. Observation of Fermi polarons in a tunable Fermi liquid of ultracold atoms. Phys. Rev. Lett. 102, 230402 (2009)
Ho, T.-L. & Zhou, Q. Obtaining phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases. Nature Phys. 6, 131–134 (2010)
Spiegelhalder, F. et al. Collisional stability of 40K immersed in a strongly interacting Fermi gas of 6Li. Phys. Rev. Lett. 103, 223203 (2009)
Ho, T.-L. & Mueller, E. High temperature expansion applied to fermions near Feshbach resonance. Phys. Rev. Lett. 92, 160404 (2004)
Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005)
Carlson, J., Chang, S., Pandharipande, V. & Schmidt, K. Superfluid Fermi gases with large scattering length. Phys. Rev. Lett. 91, 050401 (2003)
Bulgac, A., Drut, J. & Magierski, P. Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature. Phys. Rev. A 78, 023625 (2008)
Gubbels, K. & Stoof, H. Renormalization group theory for the imbalanced Fermi gas. Phys. Rev. Lett. 100, 140407 (2008)
Riedl, S., Guajardo, E., Kohstall, C., Denschlag, J. & Grimm, R. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas. Preprint at 〈http://arXiv.org/abs/0907.3814〉 (2009)
Greiner, M., Regal, C. & Jin, D. Emergence of a molecular Bose-Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003)
Inada, Y. et al. Critical temperature and condensate fraction of a fermion pair condensate. Phys. Rev. Lett. 101, 180406 (2008)
Pilati, S. & Giorgini, S. Phase separation in a polarized Fermi gas at zero temperature. Phys. Rev. Lett. 100, 030401 (2008)
Horikoshi, M., Nakajima, S., Ueda, M. & Mukaiyama, T. Measurement of universal thermodynamic functions for a unitary Fermi gas. Science 327, 442–445 (2010)
Acknowledgements
We are grateful to R. Combescot, X. Leyronas, Y. Castin, A. Recati, S. Stringari, S. Giorgini, M. Zwierlein and T. Giamarchi for discussions and to C. Cohen-Tannoudji, J. Dalibard, F. Gerbier and G. Shlyapnikov for critical reading of the manuscript. We acknowledge support from ESF (Euroquam), SCALA, ANR FABIOLA, Région Ile de France (IFRAF), ERC and Institut Universitaire de France.
Author Contributions S.N. and N.N. contributed equally to this work. S.N., N.N. and K.J.J. took the experimental data, and all authors contributed to the data analysis and writing of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Figure 1 and Legend, a Supplementary Discussion and Supplementary References. (PDF 154 kb)
Rights and permissions
About this article
Cite this article
Nascimbène, S., Navon, N., Jiang, K. et al. Exploring the thermodynamics of a universal Fermi gas. Nature 463, 1057–1060 (2010). https://doi.org/10.1038/nature08814
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature08814
This article is cited by
-
Interactions between Fermi polarons in monolayer WS2
Nature Communications (2022)
-
Power-law scalings in weakly-interacting Bose gases at quantum criticality
Frontiers of Physics (2022)
-
Second sound in the crossover from the Bose-Einstein condensate to the Bardeen-Cooper-Schrieffer superfluid
Nature Communications (2021)
-
Linear response of a superfluid Fermi gas inside its pair-breaking continuum
Scientific Reports (2020)
-
Thermodynamics of a deeply degenerate SU(N)-symmetric Fermi gas
Nature Physics (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.