Heteroplasmic mitochondrial DNA mutations in normal and tumour cells

Abstract

The presence of hundreds of copies of mitochondrial DNA (mtDNA) in each human cell poses a challenge for the complete characterization of mtDNA genomes by conventional sequencing technologies1. Here we describe digital sequencing of mtDNA genomes with the use of massively parallel sequencing-by-synthesis approaches. Although the mtDNA of human cells is considered to be homogeneous, we found widespread heterogeneity (heteroplasmy) in the mtDNA of normal human cells. Moreover, the frequency of heteroplasmic variants varied considerably between different tissues in the same individual. In addition to the variants identified in normal tissues, cancer cells harboured further homoplasmic and heteroplasmic mutations that could also be detected in patient plasma. These studies provide insights into the nature and variability of mtDNA sequences and have implications for mitochondrial processes during embryogenesis, cancer biomarker development and forensic analysis. In particular, they demonstrate that individual humans are characterized by a complex mixture of related mitochondrial genotypes rather than a single genotype.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sequencing strategy.

References

  1. 1

    Legros, F., Malka, F., Frachon, P., Lombes, A. & Rojo, M. Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662 (2004)

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Schneider, P. M. Scientific standards for studies in forensic genetics. Forensic Sci. Int. 165, 238–243 (2007)

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Wong, L. J. & Boles, R. G. Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin. Chim. Acta 354, 1–20 (2005)

    CAS  Article  PubMed  Google Scholar 

  4. 4

    White, H. E. et al. Accurate detection and quantitation of heteroplasmic mitochondrial point mutations by pyrosequencing. Genet. Test. 9, 190–199 (2005)

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Maitra, A. et al. The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res. 14, 812–819 (2004)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Dobrowolski, S. F., Gray, J., Miller, T. & Sears, M. Identifying sequence variants in the human mitochondrial genome using high-resolution melt (HRM) profiling. Hum. Mutat. 30, 891–898 (2009)

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Kraytsberg, Y., Nicholas, A., Caro, P. & Khrapko, K. Single molecule PCR in mtDNA mutational analysis: genuine mutations vs. damage bypass-derived artifacts. Methods 46, 269–273 (2008)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Kajander, O. A. et al. Human mtDNA sublimons resemble rearranged mitochondrial genoms found in pathological states. Hum. Mol. Genet. 9, 2821–2835 (2000)

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Santos, C. et al. Frequency and pattern of heteroplasmy in the control region of human mitochondrial DNA. J. Mol. Evol. 67, 191–200 (2008)

    ADS  CAS  Article  PubMed  Google Scholar 

  10. 10

    Greaves, L. C. et al. Quantification of mitochondrial DNA mutation load. Aging Cell 8, 566–572 (2009)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Kraytsberg, Y. et al. Quantitative analysis of somatic mitochondrial DNA mutations by single-cell single-molecule PCR. Methods Mol. Biol. 554, 329–369 (2009)

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Osborne, A., Reis, A. H., Bach, L. & Wangh, L. J. Single-molecule LATE-PCR analysis of human mitochondrial genomic sequence variations. PLoS ONE 4, e5636 (2009)

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G. & Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286, 774–779 (1999)

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Wang, Y. et al. Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc. Natl Acad. Sci. USA 98, 4022–4027 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  15. 15

    Ramos, A., Santos, C., Alvarez, L., Nogues, R. & Aluja, M. P. Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification. Electrophoresis 30, 1587–1593 (2009)

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Zsurka, G. et al. Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy. Nature Genet. 37, 873–877 (2005)

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Marzuki, S. et al. Developmental genetics of deleted mtDNA in mitochondrial oculomyopathy. J. Neurol. Sci. 145, 155–162 (1997)

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Taylor, R. W. et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest. 112, 1351–1360 (2003)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Coller, H. A. et al. Clustering of mutant mitochondrial DNA copies suggests stem cells are common in human bronchial epithelium. Mutat. Res. 578, 256–271 (2005)

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Polyak, K. et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet. 20, 291–293 (1998)

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Jones, J. B. et al. Detection of mitochondrial DNA mutations in pancreatic cancer offers a ‘mass’-ive advantage over detection of nuclear DNA mutations. Cancer Res. 61, 1299–1304 (2001)

    CAS  Google Scholar 

  22. 22

    Chatterjee, A., Mambo, E. & Sidransky, D. Mitochondrial DNA mutations in human cancer. Oncogene 25, 4663–4674 (2006)

    CAS  Article  Google Scholar 

  23. 23

    Wong, L. J., Lueth, M., Li, X. N., Lau, C. C. & Vogel, H. Detection of mitochondrial DNA mutations in the tumor and cerebrospinal fluid of medulloblastoma patients. Cancer Res. 63, 3866–3871 (2003)

    CAS  PubMed  Google Scholar 

  24. 24

    Coller, H. A. et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nature Genet. 28, 147–150 (2001)

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Sidransky, D. Emerging molecular markers of cancer. Nature Rev. Cancer 2, 210–219 (2002)

    CAS  Article  Google Scholar 

  27. 27

    Fliss, M. S. et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287, 2017–2019 (2000)

    ADS  CAS  Article  PubMed  Google Scholar 

  28. 28

    Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nature Med. 14, 985–990 (2008)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Sekiguchi, K., Kasai, K. & Levin, B. C. Inter- and intragenerational transmission of a human mitochondrial DNA heteroplasmy among 13 maternally-related individuals and differences between and within tissues in two family members. Mitochondrion 2, 401–414 (2003)

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Sekiguchi, K., Sato, H. & Kasai, K. Mitochondrial DNA heteroplasmy among hairs from single individuals. J. Forensic Sci. 49, 986–991 (2004)

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Whalen, J. Ptak, L. Dobbyn and N. Silliman for expert technical assistance. This work was supported by The Virginia and D. K. Ludwig Fund for Cancer Research and by National Institutes of Health grants CA57345, CA 43460, CA 62924 and CA121113.

Author Contributions Y.H., K.W.K., B.V. and N.P. designed and performed experiments, analysed data and wrote the paper. J.W. and D.C.D. performed experiments and analysed data. C.I.-D., S.D.M. and L.A.D. provided critical materials and reagents. V.E.V. analysed data and provided input to the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bert Vogelstein or Nickolas Papadopoulos.

Ethics declarations

Competing interests

Under agreements between the Johns Hopkins University, Genzyme, Exact Sciences, Beckman, Inostics, and Invitrogen, K.W.K., B.V., D.C.D., V.E.V., N.P., and L.A.D. are entitled to a share of the royalties received by the University on sales of products related to genes or technologies described in this manuscript. The University, K.W.K. and B.V. own stock in Genzyme and K.W.K., B.V., V.E.V., N.P., and L.A.D. own stock in Inostics, both of which are subject to certain restrictions under Johns Hopkins University policy. The terms of these arrangements are being managed by the Universities in accordance with their conflict of interest policies.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 with legends, and Supplementary Tables 1-8. (PDF 498 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, Y., Wu, J., Dressman, D. et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464, 610–614 (2010). https://doi.org/10.1038/nature08802

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing