WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation

Abstract

The class of exotic Jupiter-mass planets that orbit very close to their parent stars were not explicitly expected before their discovery1. The recently discovered2 transiting planet WASP-12b has a mass M = 1.4 ± 0.1 Jupiter masses (MJ), a mean orbital distance of only 3.1 stellar radii (meaning it is subject to intense tidal forces), and a period of 1.1 days. Its radius 1.79 ± 0.09RJ is unexpectedly large and its orbital eccentricity 0.049 ± 0.015 is even more surprising because such close orbits are usually quickly circularized. Here we report an analysis of its properties, which reveals that the planet is losing mass to its host star at a rate of about 10-7MJ per year. The planet’s surface is distorted by the star’s gravity and the light curve produced by its prolate shape will differ by about ten per cent from that of a spherical planet. We conclude that dissipation of the star’s tidal perturbation in the planet’s convective envelope provides the energy source for its large volume. We predict up to 10 mJy CO band-head (2.292 μm) emission from a tenuous disk around the host star, made up of tidally stripped planetary gas. It may also contain a detectable resonant super-Earth, as a hypothetical perturber that continually stirs up WASP-12b’s eccentricity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: WASP-12b’s surfaces.

References

  1. 1

    Mayor, M. & Queloz, D. A. Jupiter-mass companion to a solar-type star. Astrophys. J. 378, 355–359 (1995)

    CAS  Google Scholar 

  2. 2

    Hebb, L. et al. WASP-12 b: the hottest transiting extra solar-planet yet discovered. Astrophys. J. 693, 1920–1928 (2009)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Bodenheimer, P., Laughlin, G. & Lin, D. N. C. On the radii of extrasolar giant planets. Astrophys. J. 592, 555–563 (2003)

    ADS  Article  Google Scholar 

  4. 4

    Fortney, J. J., Marley, M. S. & Barnes, J. W. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bodenheimer, P., Lin, D. N. C. & Mardling, R. A. On the tidal inflation of short-period extrasolar planets. Astrophys. J. 548, 466–472 (2001)

    ADS  Article  Google Scholar 

  6. 6

    Guillot, T., Burrow, A., Hubbard, W. B., Lunine, J. I. & Saumon, D. Giant planets at small orbital distances. Astrophys. J. 459, L35–L38 (1996)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Dobbs-Dixon, I. & Lin, D. N. C. Atmospheric dynamics of short-period extrasolar gas giant planets. I. Dependence of nightside temperature on opacity. Astrophys. J. 673, 513–525 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Garcia Munoz, A. Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55, 1426–1455 (2007)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Hubbard, W. B., Hattori, M. F., Burrows, A., Hubeny, I. & Sudarksy, D. Effects of mass loss for highly-irradiated giant planets. Icarus 187, 358–364 (2007)

    ADS  Article  Google Scholar 

  10. 10

    Dobbs-Dixon, I., Lin, D. N. C. & Mardling, R. A. Spin-orbit evolution of short-period planets. Astrophys. J. 610, 464–476 (2004)

    ADS  Article  Google Scholar 

  11. 11

    Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966)

    ADS  Article  Google Scholar 

  12. 12

    Ogilvie, G. I. & Lin, D. N. C. Tidal dissipation in rotating giant planets. Astrophys. J. 610, 477–509 (2004)

    ADS  Article  Google Scholar 

  13. 13

    Ogilvie, G. I. & Lin, D. N. C. Tidal dissipation in rotating solar-type stars. Astrophys. J. 661, 1180–1191 (2007)

    ADS  Article  Google Scholar 

  14. 14

    Yoder, C. F. & Peale, S. J. The tide of Io. Icarus 47, 1–35 (1981)

    ADS  Article  Google Scholar 

  15. 15

    Knutson, H. et al. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Lin, D. N. C. & Papaloizou, J. C. B. in Protostars and Planets III (eds Black, D. & Mathews, M.) 749–835 (University of Arizona Press, 1993)

    Google Scholar 

  17. 17

    Adams, F. C., Shu, F. H. & Lada, C. J. The disks of T Tauri stars with flat infrared spectra. Astrophys. J. 326, 865–883 (1988)

    ADS  Article  Google Scholar 

  18. 18

    Hartmann, L., Calvet, N., Gullbring, E. & D’Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998)

    ADS  Article  Google Scholar 

  19. 19

    Najita, J., Carr, J. S., Glassgold, A. E., Shu, F. H. & Tokunaga, A. T. Kinematic diagnostics of disks around young stars: CO overtone emission from WL 16 and 1548C27. Astrophys. J. 462, 919–936 (1996)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Vauclair, S. Metallic fingers and metallicity excess in exoplanets’ host stars: the accretion hypothesis revisited. Astrophys. J. 605, 874–879 (2004)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Sasselov, D. D. The new transiting planet OGLE-TR-56b: orbit and atmosphere. Astrophys. J. 596, 1327–1331 (2003)

    ADS  Article  Google Scholar 

  22. 22

    Hellier, C. et al. An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b. Nature 460, 1098–1100 (2009)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Meibom, S., Mathieu, R. D. & Stassun, K. G. An observational study of tidal synchronization in solar-type binary stars in the open clusters M35 and M34. Astrophys. J. 653, 621–635 (2006)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Peale, S., Cassen, P. & Reynolds, R. T. Melting Io by tidal dissipation. Science 203, 892–894 (1979)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Lin, D. N. C. & Papaloizou, J. On the structure of circumbinary accretion disks and the tidal evolution of commensurable satellites. Mon. Not. R. Astron. Soc. 188, 191–201 (1979)

    ADS  Article  Google Scholar 

  26. 26

    Tanaka, H., Takeuchi, T. & Ward, W. R. Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. Astrophys. J. 565, 1257–1274 (2002)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Kavli Foundation, which enabled the initiation and development of this work at KIAA-PKU. It is also supported by NASA, JPL and the NSF.

Author Contributions S.-l.L. and D.N.C.L. constructed arguments for mass loss and tidal heating of WASP-12b, and also composed the draft of the paper. N.M. brought WASP-12b’s large radius to the attention of the team and designed the illustration. J.J.F. contributed information on the planet’s opacity and improved the presentation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Douglas N. C. Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains supplementary Methods and Supplementary References. (PDF 81 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, S., Miller, N., Lin, D. et al. WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation. Nature 463, 1054–1056 (2010). https://doi.org/10.1038/nature08715

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing