Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Violation of Bell's inequality in Josephson phase qubits


The measurement process plays an awkward role in quantum mechanics, because measurement forces a system to ‘choose’ between possible outcomes in a fundamentally unpredictable manner. Therefore, hidden classical processes have been considered as possibly predetermining measurement outcomes while preserving their statistical distributions1. However, a quantitative measure that can distinguish classically determined correlations from stronger quantum correlations exists in the form of the Bell inequalities, measurements of which provide strong experimental evidence that quantum mechanics provides a complete description2,3,4. Here we demonstrate the violation of a Bell inequality in a solid-state system. We use a pair of Josephson phase qubits5,6,7 acting as spin-1/2 particles, and show that the qubits can be entangled8,9 and measured so as to violate the Clauser–Horne–Shimony–Holt (CHSH) version of the Bell inequality10. We measure a Bell signal of 2.0732 ± 0.0003, exceeding the maximum amplitude of 2 for a classical system by 244 standard deviations. In the experiment, we deterministically generate the entangled state, and measure both qubits in a single-shot manner, closing the detection loophole11. Because the Bell inequality was designed to test for non-classical behaviour without assuming the applicability of quantum mechanics to the system in question, this experiment provides further strong evidence that a macroscopic electrical circuit is really a quantum system7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Resonator-coupled qubits.
Figure 2: Entanglement analysis.
Figure 3: Verification experiments.
Figure 4: Entanglement analysis.


  1. 1

    Bell, J. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    MathSciNet  Article  Google Scholar 

  2. 2

    Roos, C. F. et al. Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kocher, C. A. & Commins, E. D. Polarization correlation of photons emitted in an atomic cascade. Phys. Rev. Lett. 18, 575 (1967)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Aspect, A. et al. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Devoret, M. H. & Martinis, J. M. Implementing qubits with superconducting integrated circuits. Quantum Inf. Process. 3, 163–203 (2004)

    Article  Google Scholar 

  6. 6

    Martinis, J. Superconducting phase qubits. Quant. Inf. Process. 8, 81–103 (2009)

    CAS  Article  Google Scholar 

  7. 7

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Wei, L. F., Liu, Y. X., Storcz, M. J. & Nori, F. Macroscopic Einstein-Podolsky-Rosen pairs in superconducting circuits. Phys. Rev. A 73, 052307 (2006)

    ADS  Article  Google Scholar 

  10. 10

    Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    ADS  Article  Google Scholar 

  11. 11

    Pearle, P. M. Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418–1425 (1970)

    ADS  Article  Google Scholar 

  12. 12

    Einstein, A., Podolsky, B. & Rosen, N. Can the quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  14. 14

    Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S. & Monroe, C. Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Sillanpaa, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007)

    ADS  Article  Google Scholar 

  17. 17

    Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Lucero, E. et al. High-fidelity gates in a Josephson qubit. Phys. Rev. Lett. 100, 247001 (2008)

    ADS  Article  Google Scholar 

  19. 19

    Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  20. 20

    McDermott, R. et al. Simultaneous state measurement of coupled Josephson phase qubits. Science 307, 1299–1302 (2005)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Kofman, A. G. & Korotkov, A. N. Analysis of Bell inequality violation in superconducting phase qubits. Phys. Rev. B 77, 104502 (2008)

    ADS  Article  Google Scholar 

  22. 22

    Cooper, K. B. et al. Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout. Phys. Rev. Lett. 93, 180401 (2004)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2004)

    ADS  Article  Google Scholar 

  24. 24

    Hofheinz, M. et al. Generation of Fock states in a superconducting quantum circuit. Nature 454, 310–314 (2008)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Hill, S. & Wootters, W. K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Bialczak, R. C. et al. 1/f flux noise in Josephson phase qubits. Phys. Rev. Lett. 99, 187006 (2007)

    ADS  Article  Google Scholar 

  27. 27

    DiVincenzo, D. P. The physical implementation of quantum computation. Preprint at 〈〉 (2000)

    ADS  Article  Google Scholar 

Download references


We thank A. Korotkov and A. Kofman for discussions of our measurement process. Devices were made at the UCSB Nanofabrication Facility, a part of the NSF-funded National Nanotechnology Infrastructure Network. This work was supported by IARPA under grant W911NF-04-1-0204 and by the NSF under grant CCF-0507227.

Author Contributions M.A. performed the experiment and analysed the data, while H.W. fabricated the sample. J.M.M. and E.L. designed the custom electronics and M.H. developed the calibrations for it. M.A. and M.N. provided software infrastructure. All authors contributed to various tasks, such as the fabrication process, qubit design, or experimental set-up.

Author information



Corresponding author

Correspondence to John M. Martinis.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Data, Supplementary Figures 1-2 with Legends and Supplementary References. Supplementary Tables II and II were corrected on 24 December 2009. (PDF 387 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ansmann, M., Wang, H., Bialczak, R. et al. Violation of Bell's inequality in Josephson phase qubits. Nature 461, 504–506 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing