Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The remnants of galaxy formation from a panoramic survey of the region around M31


In hierarchical cosmological models1, galaxies grow in mass through the continual accretion of smaller ones. The tidal disruption of these systems is expected to result in loosely bound stars surrounding the galaxy, at distances that reach 10–100 times the radius of the central disk2,3. The number, luminosity and morphology of the relics of this process provide significant clues to galaxy formation history4, but obtaining a comprehensive survey of these components is difficult because of their intrinsic faintness and vast extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We detect stars and coherent structures that are almost certainly remnants of dwarf galaxies destroyed by the tidal field of M31. An improved census of their surviving counterparts implies that three-quarters of M31’s satellites brighter than Mv = -6 await discovery. The brightest companion, Triangulum (M33), is surrounded by a stellar structure that provides persuasive evidence for a recent encounter with M31. This panorama of galaxy structure directly confirms the basic tenets of the hierarchical galaxy formation model and reveals the shared history of M31 and M33 in the unceasing build-up of galaxies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stellar density map of Andromeda–Triangulum.
Figure 2: Distribution of M31 dwarf galaxies.
Figure 3: An M31–M33 interaction.


  1. White, S. D. M. & Rees, M. J. Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    Article  ADS  Google Scholar 

  2. Bullock, J. S. & Johnston, K. V. Tracing galaxy formation with stellar halos. I. Methods. Astrophys. J. 635, 931–949 (2005)

    Article  ADS  Google Scholar 

  3. Abadi, M. G., Navarro, J. F. & Steinmetz, M. Stars beyond galaxies: the origin of extended luminous haloes around galaxies. Mon. Not. R. Astron. Soc. 365, 747–758 (2006)

    Article  ADS  Google Scholar 

  4. Johnston, K. V. et al. Tracing galaxy formation with stellar halos. II. Relating substructure in phase and abundance space to accretion histories. Astrophys. J. 689, 936–957 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Eggen, O. J., Lynden-Bell, D. & Sandage, A. R. Evidence from the motions of old stars that the Galaxy collapsed. Astrophys. J. 136, 748–766 (1962)

    Article  ADS  Google Scholar 

  6. Searle, L. & Zinn, R. Compositions of halo clusters and the formation of the galactic halo. Astrophys. J. 225, 357–379 (1978)

    Article  ADS  CAS  Google Scholar 

  7. Ibata, R. A., Gilmore, G. & Irwin, M. J. A dwarf satellite galaxy in Sagittarius. Nature 370, 194–196 (1994)

    Article  ADS  Google Scholar 

  8. Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, L19–L22 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Bullock, J. S., Kravtsov, A. V. & Weinberg, D. H. Reionization and the abundance of galactic satellites. Astrophys. J. 539, 517–521 (2000)

    Article  ADS  Google Scholar 

  11. Kravtsov, A. V., Gnedin, O. Y. & Klypin, A. A. The tumultuous lives of galactic dwarfs and the missing satellites problem. Astrophys. J. 609, 482–497 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Belokurov, V. et al. The field of streams: Sagittarius and its siblings. Astrophys. J. 642, L137–L140 (2006)

    Article  ADS  Google Scholar 

  13. Ibata, R., Irwin, M., Lewis, G., Ferguson, A. M. N. & Tanvir, N. A giant stream of metal-rich stars in the halo of the galaxy M31. Nature 412, 49–52 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Ferguson, A. M. N., Irwin, M. J., Ibata, R. A., Lewis, G. F. & Tanvir, N. R. Evidence for stellar substructure in the halo and outer disk of M31. Astron. J. 124, 1452–1463 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Martin, N. F. et al. Discovery and analysis of three faint dwarf galaxies and a globular cluster in the outer halo of the Andromeda galaxy. Mon. Not. R. Astron. Soc. 371, 1983–1991 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Ibata, R. et al. The haunted halos of Andromeda and Triangulum: a panorama of galaxy formation in action. Astrophys. J. 671, 1591–1623 (2007)

    Article  ADS  CAS  Google Scholar 

  17. McConnachie, A. W. et al. A trio of new Local Group galaxies with extreme properties. Astrophys. J. 688, 1009–1020 (2008)

    Article  ADS  Google Scholar 

  18. Johnston, K. V., Hernquist, L. & Bolte, M. Fossil signatures of ancient accretion events in the halo. Astrophys. J. 465, 278–287 (1996)

    Article  ADS  Google Scholar 

  19. Thilker, D. A. et al. On the continuing formation of the Andromeda galaxy: detection of H i clouds in the M31 halo. Astrophys. J. 601, L39–L42 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Schechter, P. An analytic expression for the luminosity function for galaxies. Astrophys. J. 203, 297–306 (1976)

    Article  ADS  Google Scholar 

  21. Rogstad, D. H., Wright, M. C. H. & Lockhart, I. A. Aperture synthesis of neutral hydrogen in the galaxy M33. Astrophys. J. 204, 703–711 (1976)

    Article  ADS  CAS  Google Scholar 

  22. Corbelli, E. & Schneider, S. E. A warped disk model for M33 and the 21 centimeter line width in spiral galaxies. Astrophys. J. 479, 244–257 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Brunthaler, A., Reid, M. J., Falcke, H., Greenhill, L. J. & Henkel, C. The Geometric distance and proper motion of the Triangulum Galaxy (M33). Science 307, 1440–1443 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Loeb, A., Reid, M. J., Brunthaler, A. & Falcke, H. Constraints on the proper motion of the Andromeda galaxy based on the survival of its satellite M33. Astrophys. J. 633, 894–898 (2005)

    Article  ADS  Google Scholar 

  25. Dubinski, J. A parallel tree code. N. Astron. 1, 133–147 (1996)

    Article  ADS  Google Scholar 

  26. McConnachie, A. W. et al. Distances and metallicities for 17 Local Group galaxies. Mon. Not. R. Astron. Soc. 356, 979–997 (2005)

    Article  ADS  Google Scholar 

  27. Richardson, J. C. et al. The nature and origin of substructure in the outskirts of M31. I. Surveying the stellar content with the Hubble Space Telescope Advanced Camera for Surveys. Astron. J. 135, 1998–2012 (2008)

    Article  ADS  Google Scholar 

  28. Ibata, R. et al. On the accretion origin of a vast extended stellar disk around the Andromeda galaxy. Astrophys. J. 634, 287–313 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Dotter, A. et al. The Dartmouth stellar evolution database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Widrow, L. M., Pym, B. & Dubinski, J. Dynamical blueprints for galaxies. Astrophys. J. 679, 1239–1259 (2008)

    Article  ADS  Google Scholar 

Download references


We thank the entire staff at the Canada–France–Hawaii Telescope for taking the data, for initial processing with Elixir and for their continuing support throughout this project. A.M.N.F. and A.D.M. are supported by a Marie Curie Excellence Grant from the European Commission under contract MCEXT-CT-2005-025869. G.F.L. thanks the Australian Nuclear Science and Technology Organisation (ANSTO) for supporting his involvement in PAndAS through its Access to Major Research Facilities Program (AMRFP). R.M.R. acknowledges grant AST-0709479 from the National Science Foundation, and grants GO-9453, GO-10265 and GO-10816 from the Space Telescope Science Institute. The image of M33 overlaid in Fig. 1 is reproduced by courtesy of T. A. Rector and M. Hanna.

Author Contributions All authors assisted in the development and writing of the paper. In addition, A.W.M. is the Principal Investigator of PAndAS; M.J.I. led the data processing effort; R.A.I. was the Principal Investigator of an earlier CFHT MegaPrime/MegaCam survey, which PAndAS builds on (which included S.C.C., A.M.N.F., M.J.I., G.F.L., N.F.M., A.W.M. and N.T.); J.D., L.M.W. modelled the M31–M33 interaction; N.F.M. had a lead role in the study of the dwarf galaxies; P.C. assisted with constructing the luminosity function; and A.L.D. developed the theoretical isochrones.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alan W. McConnachie.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Methods and Supplementary Tables 1-2. (PDF 135 kb)

Supplementary Movie 1

This animated movie depicts a model of the interaction of M31 and M33 highlighting the excitation of tidal tails as the plausible origin of the extensions of the M33 stellar disk and gaseous warp. The tidal stripping of the M33 stellar halo is not the likely origin of the observed extensions. (MOV 9842 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McConnachie, A., Irwin, M., Ibata, R. et al. The remnants of galaxy formation from a panoramic survey of the region around M31. Nature 461, 66–69 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing