Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

El Niño in a changing climate

An Erratum to this article was published on 03 December 2009

Abstract

El Niño events, characterized by anomalous warming in the eastern equatorial Pacific Ocean, have global climatic teleconnections and are the most dominant feature of cyclic climate variability on subdecadal timescales. Understanding changes in the frequency or characteristics of El Niño events in a changing climate is therefore of broad scientific and socioeconomic interest. Recent studies1,2,3,4,5 show that the canonical El Niño has become less frequent and that a different kind of El Niño has become more common during the late twentieth century, in which warm sea surface temperatures (SSTs) in the central Pacific are flanked on the east and west by cooler SSTs. This type of El Niño, termed the central Pacific El Niño (CP-El Niño; also termed the dateline El Niño2, El Niño Modoki3 or warm pool El Niño5), differs from the canonical eastern Pacific El Niño (EP-El Niño) in both the location of maximum SST anomalies and tropical–midlatitude teleconnections. Here we show changes in the ratio of CP-El Niño to EP-El Niño under projected global warming scenarios from the Coupled Model Intercomparison Project phase 3 multi-model data set6. Using calculations based on historical El Niño indices, we find that projections of anthropogenic climate change are associated with an increased frequency of the CP-El Niño compared to the EP-El Niño. When restricted to the six climate models with the best representation of the twentieth-century ratio of CP-El Niño to EP-El Niño, the occurrence ratio of CP-El Niño/EP-El Niño is projected to increase as much as five times under global warming. The change is related to a flattening of the thermocline in the equatorial Pacific.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Deviations of mean SST for the two characteristics of El Niño from the 1854–2006 climatology.
Figure 2: Deviations for the two characteristics of El Niño from their climatology.
Figure 3: The CP-El Niño/EP-El Niño occurrence ratio.
Figure 4: The ensemble mean thermocline depth.

References

  1. Latif, M., Kleeman, R. & Eckert, C. Greenhouse warming, decadal variability, or El Niño? An attempt to understand the anomalous 1990s. J. Clim. 10, 2221–2239 (1997)

    ADS  Article  Google Scholar 

  2. Larkin, N. K. & Harrison, D. E. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett. 32 L13705 10.1029/2005GL022738 (2005)

    ADS  Article  Google Scholar 

  3. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112 C11007 10.1029/2006JC003798 (2007)

    ADS  Article  Google Scholar 

  4. Kao, H.-Y. & Yu, J.-Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 22, 615–632 (2009)

    ADS  Article  Google Scholar 

  5. Kug, J.-S., Jin, F.-F. & An, S.-I. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009)

    ADS  Article  Google Scholar 

  6. Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007)

    ADS  Article  Google Scholar 

  7. Trenberth, K. & Shea, D. J. On the evolution of the Southern Oscillation. Mon. Weath. Rev. 115, 3078–3096 (1987)

    ADS  Article  Google Scholar 

  8. Cobb, K., Charles, C., Cheng, H. & Edwards, R. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424, 272–276 (2003)

    ADS  Google Scholar 

  9. An, S.-I. & Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Clim. 17, 2399–2412 (2004)

    ADS  Article  Google Scholar 

  10. An, S.-I. & Wang, B. Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Clim. 13, 2044–2055 (2000)

    ADS  Article  Google Scholar 

  11. Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon. Weath. Rev. 110, 354–384 (1982)

    ADS  Article  Google Scholar 

  12. Trenberth, K. E. & Stepaniak, D. P. Indices of El Nino evolution. J. Clim. 14, 1697–1701 (2001)

    ADS  Article  Google Scholar 

  13. Weng, H., Ashok, K., Behera, S. K., Rao, S. A. & Yamagata, T. Impacts of recent El Nino Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Clim. Dyn. 29, 113–129 (2007)

    Article  Google Scholar 

  14. Weng, H., Behera, S. K. & Yamagata, T. Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Clim. Dyn. 32, 663–674 (2009)

    Article  Google Scholar 

  15. Solomon, S. et al. (eds) Climate Change 2007: The Physical Science Basis (Cambridge University Press for the Intergovernmental Panel on Climate Change, 2007)

    Google Scholar 

  16. Hoerling, M. P. & Kumar, A. Atmospheric response patterns associated with tropical forcing. J. Clim. 15, 2184–2203 (2002)

    ADS  Article  Google Scholar 

  17. Alexander, M. et al. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Clim. 15, 2205–2228 (2002)

    ADS  Article  Google Scholar 

  18. Barsugli, J. & Sardeshmukh, P. D. Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Clim. 15, 3427–3442 (2002)

    ADS  Article  Google Scholar 

  19. Cayan, D. R. Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J. Phys. Oceanogr. 22, 859–881 (1992)

    ADS  Article  Google Scholar 

  20. Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G. & Cane, M. Unraveling the mystery of Indian monsoon failure during El Niño events. Science 314, 115–119 (2006)

    ADS  CAS  Article  Google Scholar 

  21. Wang, G. & Hendon, H. H. Sensitivity of Australian rainfall to inter-El Nino variations. J. Clim. 20, 4211–4226 (2007)

    ADS  Article  Google Scholar 

  22. Fedorov, A. V. & Philander, S. G. H. Is El Niño changing? Science 288, 1997–2002 (2000)

    ADS  CAS  Article  Google Scholar 

  23. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006)

    ADS  CAS  Article  Google Scholar 

  24. Bejarano, L. & Jin, F.-F. Coexistence of equatorial coupled mode of ENSO. J. Clim. 21, 3051–3067 (2008)

    ADS  Article  Google Scholar 

  25. Smith, T. M. & Reynolds, R. W. Improved extended reconstruction of SST (1854–1997). J. Clim. 17, 2466–2477 (2004)

    ADS  Article  Google Scholar 

  26. Xie, P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical outputs. Bull. Am. Meteorol. Soc. 78, 2539–2558 (1997)

    ADS  Article  Google Scholar 

  27. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996)

    ADS  Article  Google Scholar 

  28. Efron, B. The Jackknife, the Bootstrap, and Other Resampling Plans 1–92 (Society for Industrial and Applied Mathematics, 1982)

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledge the international modelling groups for providing their data and PCMDI and the IPCC Data Archive at LLNL/DOE for collecting, archiving and making the data readily available. S.-W.Y. and J.-S.K. are supported by KORDI (grants PE98401, PP00720). B.D. benefited from funding from the PCCC project (Peru Chile Climate Change) of the ANR (Agence Nationale de la Recherche). J.-S. K. and F.-F. J. are also supported by NSF grants ATM 060552 and AMT 065145 and NOAA grant GC01-229.

Author Contributions S.-W.Y., M.K. and J.-S.K. contributed to analysis. S.-W.Y., J.-S.K., B.D, B.P.K. and F.-F.J. contributed to writing the paper. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Yeh.

Supplementary information

Supplementary information

This file contains Supplementary Notes, Supplementary References, Supplementary Tables 1-4 and Supplementary Figures 1-5 with Legends. (PDF 748 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yeh, SW., Kug, JS., Dewitte, B. et al. El Niño in a changing climate. Nature 461, 511–514 (2009). https://doi.org/10.1038/nature08316

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08316

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing