Glacial effects limiting mountain height

Abstract

The height of mountain ranges reflects the balance between tectonic rock uplift, crustal strength and surface denudation. Tectonic deformation and surface denudation are interdependent, however, and feedback mechanisms—in particular, the potential link to climate—are subjects of intense debate1,2. Spatial variations in fluvial denudation rate caused by precipitation gradients are known to provide first-order controls on mountain range width, crustal deformation rates and rock uplift3,4. Moreover, limits to crustal strength5 are thought to constrain the maximum elevation of large continental plateaus, such as those in Tibet and the central Andes. There are indications that the general height of mountain ranges is also directly influenced by the extent of glaciation through an efficient denudation mechanism known as the glacial buzzsaw6,7,8,9. Here we use a global analysis of topography and show that variations in maximum mountain height correlate closely with climate-controlled gradients in snowline altitude for many high mountain ranges across orogenic ages and tectonic styles. With the aid of a numerical model, we further demonstrate how a combination of erosional destruction of topography above the snowline by glacier-sliding and commensurate isostatic landscape uplift caused by erosional unloading can explain observations of maximum mountain height by driving elevations towards an altitude window just below the snowline. The model thereby self-consistently produces the hypsometric signature of the glacial buzzsaw, and suggests that differences in the height of mountain ranges mainly reflect variations in local climate rather than tectonic forces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Global prevalence of the glacial buzzsaw.
Figure 2: Maximum elevations and hypsometric maxima elevations correlate with local snowline altitudes.
Figure 3: Numerical model of glacial erosion in the Sierra Nevada (Spain).

References

  1. 1

    Whipple, K. X., Kirby, E. & Brocklehurst, S. H. Geomorphic limits to climate-induced increases in topographic relief. Nature 401, 39–43 (1999)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Whipple, K. X. The influence of climate on the tectonic evolution of mountain belts. Nature Geosci. 2, 97–104 (2009)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Beaumont, C., Fullsack, P. & Hamilton, J. in Thrust Tectonics (ed. McClay, K. R.) 1–18 (Chapman & Hall, 1992)

    Google Scholar 

  4. 4

    Willett, S. D. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. 104, 28957–28981 (1999)

    ADS  Article  Google Scholar 

  5. 5

    Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Medvedev, S. Crustal channel flows: 1. Numerical models with application to the tectonics of the Himalayan-Tibetan orogen. J. Geophys. Res. 109, B06406 (2004)

    ADS  Article  Google Scholar 

  6. 6

    Brozovic, N., Burbank, D. & Meigs, A. Climatic limits on landscape development in the northwestern Himalaya. Science 276, 571–574 (1997)

    CAS  Article  Google Scholar 

  7. 7

    Montgomery, D. R., Balco, G. & Willett, S. D. Climate, tectonics, and the morphology of the Andes. Geology 29, 579–582 (2001)

    ADS  Article  Google Scholar 

  8. 8

    Mitchell, S. G. & Montgomery, D. R. Influence of a glacial buzzsaw on the height and morphology of the Cascade Range in central Washington State, USA. Quat. Res. 65, 96–107 (2006)

    Article  Google Scholar 

  9. 9

    Foster, D., Brocklehurst, S. H. & Gawthorpe, R. L. Small valley glaciers and the effectiveness of the glacial buzzsaw in the northern Basin and Range, USA. Geomorphology 102, 624–639 (2008)

    ADS  Article  Google Scholar 

  10. 10

    Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34 (1990)

    ADS  Article  Google Scholar 

  11. 11

    Brocklehurst, S. H. & Whipple, K. X. Glacial erosion and relief production in the Eastern Sierra Nevada, California. Geomorphology 42, 1–24 (2002)

    ADS  Article  Google Scholar 

  12. 12

    Shuster, D. L., Ehlers, T. A., Rusmoren, M. E. & Farley, K. A. Rapid glacial erosion at 1.8 Ma revealed by 4He/3He thermochronometry. Science 310, 1668–1670 (2005)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Berger, A. L. & Spotila, J. A. Denudation and deformation in a glaciated orogenic wedge: the St. Elias orogen, Alaska. Geology 36, 523–526 (2008)

    ADS  Article  Google Scholar 

  14. 14

    Paterson, W. S. B. The Physics of Glaciers 3rd edn (Butterworth-Heinemann, 1994)

    Google Scholar 

  15. 15

    Brocklehurst, S. H. & Whipple, K. X. Hypsometry of glaciated landscapes. Earth Surf. Process. Landforms 29, 907–926 (2004)

    ADS  Article  Google Scholar 

  16. 16

    Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45 RG2004 10.1029/2005RG000183 (2007)

    ADS  Article  Google Scholar 

  17. 17

    Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501 (1989)

    CAS  ADS  Article  Google Scholar 

  18. 18

    National Snow and Ice Data Center. World glacier inventory (2009). 〈http://nsidc.org/data/docs/noaa/g01130_glacier_inventory〉.

  19. 19

    Stern, T. A., Baxter, A. K. & Barrett, P. J. Isostatic rebound due to glacial erosion within the Transantarctic Mountains. Geology 33, 221–224 (2005)

    ADS  Article  Google Scholar 

  20. 20

    Brocklehurst, S. H. & Whipple, K. X. Assessing the relative efficiency of fluvial and glacial erosion through simulation of fluvial landscapes. Geomorphology 75, 283–299 (2006)

    ADS  Article  Google Scholar 

  21. 21

    Roering, J. J., Kirchner, J. W. & Dietrich, W. E. Evidence for nonlinear, diffusive sediment transport and implications for landscape morphology. Wat. Resour. Res. 35, 853–870 (1999)

    ADS  Article  Google Scholar 

  22. 22

    Montgomery, D. R. Valley incision and the uplift of mountain peaks. J. Geophys. Res. 99, 13913–13921 (1994)

    ADS  Article  Google Scholar 

  23. 23

    Anderson, R. S. Modeling of tor-dotted crests, bedrock edges and parabolic profiles of the high alpine surfaces of the Wind River Range, Wyoming. Geomorphology 46, 35–58 (2002)

    ADS  Article  Google Scholar 

  24. 24

    Small, E. E. & Anderson, R. S. Pleistocene relief production in Laramide Mountain Ranges, western U.S. Geology 26, 123–126 (1998)

    ADS  Article  Google Scholar 

  25. 25

    Munroe, J. S. Investigating the spatial distribution of summit flats in the Uinta Mountains of northeastern Utah, USA. Geomorphology 75, 437–449 (2006)

    ADS  Article  Google Scholar 

  26. 26

    Brocklehurst, S. H. & Whipple, K. X. Response of glacial landscapes to spatial variations in rock uplift rate. J. Geophys. Res. 112 F02035 10.1029/2006JF000667 (2007)

    ADS  Article  Google Scholar 

  27. 27

    Harbor, J. M., Hallet, B. & Raymond, C. F. A numerical model of landform development by glacial erosion. Nature 333, 347–349 (1988)

    ADS  Article  Google Scholar 

  28. 28

    MacGregor, K. R., Anderson, R. S., Anderson, S. P. & Waddington, E. D. Numerical simulations of glacial-valley longitudinal profile evolution. Geology 28, 1031–1034 (2000)

    ADS  Article  Google Scholar 

  29. 29

    Tomkin, J. H. & Braun, J. The influence of alpine glaciation on the relief of tectonically active mountain belts. Am. J. Sci. 302, 169–190 (2002)

    ADS  Article  Google Scholar 

  30. 30

    Baral, D. R., Hutter, K. & Greve, R. Asymptotic theories of large-scale motion, temperature, and moisture distribution in land-based polythermal ice sheets: A critical review and new developments. Appl. Mech. Rev. 54, 215–256 (2001)

    ADS  Article  Google Scholar 

  31. 31

    Harbor, J. M., Hallet, B. & Raymond, C. F. A numerical model of landform development by glacial erosion. Nature 333, 347–349 (1988)

    ADS  Article  Google Scholar 

  32. 32

    Braun, J., Zwartz, D. & Tomkin, J. A new surface-processes model combining glacial and fluvial erosion. Ann. Glaciol. 28, 282–290 (1999)

    ADS  Article  Google Scholar 

  33. 33

    MacGregor, K. R., Anderson, R. S., Anderson, S. P. & Waddington, E. D. Numerical simulations of glacial-valley longitudinal profile evolution. Geology 28, 1031–1034 (2000)

    ADS  Article  Google Scholar 

  34. 34

    Jamieson, S. S. R., Hulton, N. R. J. & Hagdorn, M. Modelling landscape evolution under ice sheets. Geomorphology 97, 91–108 (2008)

    ADS  Article  Google Scholar 

  35. 35

    Tomkin, J. H. Numerically simulating alpine landscapes: the geomorphologic consequences of incorporating glacial erosion in surface process models. Geomorphology 103, 180–188 (2009)

    ADS  Article  Google Scholar 

  36. 36

    Baral, D. R., Hutter, K. & Greve, R. Asymptotic theories of large-scale motion, temperature, and moisture distribution in land-based polythermal ice sheets: a critical review and new developments. Appl. Mech. Rev. 54, 215–256 (2001)

    ADS  Article  Google Scholar 

  37. 37

    Hooke, R. L. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. Space Phys. 19, 664–672 (1981)

    ADS  Article  Google Scholar 

  38. 38

    Paterson, W. S. B. The Physics of Glaciers 3rd edn (Butterworth-Heinemann, 1994)

    Google Scholar 

  39. 39

    Budd, W. F., Keage, P. L. & Blundy, N. A. Empirical studies of ice sliding. J. Glaciol. 23, 157–170 (1979)

    ADS  Article  Google Scholar 

  40. 40

    Bindschadler, R. The importance of pressurized subglacial water in separation and sliding at the glacier bed. J. Glaciol. 29, 3–19 (1983)

    ADS  Article  Google Scholar 

  41. 41

    Harbor, J. M. Application of a general sliding law to simulating flow in a glacier cross-section. J. Glaciol. 38, 182–190 (1992)

    ADS  Article  Google Scholar 

  42. 42

    Hallet, B. Glacial quarrying: a simple theoretical model. Ann. Glaciol. 22, 1–8 (1996)

    ADS  Article  Google Scholar 

  43. 43

    Humphrey, N. F. & Raymond, C. F. Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982-83. J. Glaciol. 40, 539–552 (1994)

    Article  Google Scholar 

  44. 44

    Roering, J. J., Kirchner, J. W. & Dietrich, W. E. Evidence for nonlinear, diffusive sediment transport and implications for landscape morphology. Wat. Resour. Res. 35, 853–870 (1999)

    ADS  Article  Google Scholar 

  45. 45

    Pelletier, J. Quantitative Modeling of Earth Surface Processes (Cambridge Univ. Press, 2008)

    Google Scholar 

Download references

Acknowledgements

We thank K. Hutter and N. Kirchner for assistance with the implementation of the SOSIA. We also thank C. Clark, J. A. Piotrowski, B. H. Jacobsen, M. Sandiford, R. Brown and O. Humlum for comments. J. Braun and S. Brocklehurst are thanked for reviews that improved the manuscript considerably.

Author Contributions D.L.E. and S.B.N. designed the study. V.K.P. and D.L.E. performed the global topographic analysis. D.L.E. implemented the SOSIA and performed the numerical modelling. All four authors contributed to writing the paper in the order listed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. L. Egholm.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S12 with Legends, Supplementary Data and Supplementary References. (PDF 13914 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Egholm, D., Nielsen, S., Pedersen, V. et al. Glacial effects limiting mountain height. Nature 460, 884–887 (2009). https://doi.org/10.1038/nature08263

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing