Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global electromagnetic induction constraints on transition-zone water content variations

Abstract

Small amounts of water can significantly affect the physical properties of mantle materials, including lowering of the solidus1, and reducing effective viscosity2 and seismic velocity3. The amount and distribution of water within the mantle thus has profound implications for the dynamics and geochemical evolution of the Earth4,5. Electrical conductivity is also highly sensitive to the presence of hydrogen in mantle minerals6. The mantle transition zone minerals wadsleyite and ringwoodite in particular have high water solubility4, and recent high pressure experiments show that the electrical conductivity of these minerals is very sensitive to water content7,8,9. Thus estimates of the electrical conductivity of the mantle transition zone derived from electromagnetic induction studies have the potential to constrain the water content of this region. Here we invert long period geomagnetic response functions to derive a global-scale three-dimensional model of electrical conductivity variations in the Earth’s mantle, revealing variations in the electrical conductivity of the transition zone of approximately one order of magnitude. Conductivities are high in cold, seismically fast, areas where slabs have subducted into or through the transition zone. Significant variations in water content throughout the transition zone provide a plausible explanation for the observed patterns. Our results support the view10,11 that at least some of the water in the transition zone has been carried into that region by cold subducting slabs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Regularized degree and order nine electrical conductivity inverse solution.
Figure 2: Global and regional electrical conductivity profiles, based on the three-dimensional inverse solution presented in Fig. 1 .

References

  1. 1

    Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Dixon, J. E., Dixon, T. H., Bell, D. R. & Malservisi, R. Lateral variation in upper mantle viscosity: role of water. Earth Planet. Sci. Lett. 222, 451–467 (2004)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Karato, S.-I. & Jung, H. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett. 157, 193–207 (1998)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Williams, Q. & Hemley, R. J. Hydrogen in the deep Earth. Annu. Rev. Earth Planet. Sci. 29, 365–418 (2001)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Bercovici, D. & Karato, S.-i. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Karato, S. The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347, 272–273 (1990)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Huang, X., Xu, Y. & Karato, S.-i. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434, 746–749 (2005)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Yoshino, T., Manthilake, G., Matsuzaki, T. & Katsura, T. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature 451, 326–329 (2008)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Karato, S. & Dai, L. Comments on “Electrical conductivity of wadsleyite as a function of temperature and water content” by Manthilake et al . Phys. Earth Planet. Inter. (in the press)

  10. 10

    Ohtani, E., Litasov, K., Hosoya, T., Kubo, T. & Kondo, T. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet. Inter. 143, 255–269 (2004)

    ADS  Article  Google Scholar 

  11. 11

    Kawakatsu, H. & Watada, S. Seismic evidence for deep-water transportation in the mantle. Science 316, 1468–1471 (2007)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Kelbert, A., Egbert, G. D. & Schultz, A. Non-linear conjugate gradient inversion for global EM induction: resolution studies. Geophys. J. Int. 173, 365–381 (2008)

    ADS  Article  Google Scholar 

  13. 13

    Hae, R., Ohtani, E., Kubo, T., Koyama, T. & Utada, H. Hydrogen diffusivity in wadsleyite and water distribution in the mantle transition zone. Earth Planet. Sci. Lett. 243, 141–148 (2006)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Toffelmier, D. A. & Tyburczy, J. A. Electromagnetic detection of a 410-km-deep melt layer in the southwestern United States. Nature 447, 991–994 (2007)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Booker, J. R., Favetto, A. & Pomposiello, M. C. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429, 399–403 (2004)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Fukao, Y., Koyama, T., Obayashi, M. & Utada, H. Trans-Pacific temperature field in the mantle transition region derived from seismic and electromagnetic tomography. Earth Planet. Sci. Lett. 217, 425–434 (2004)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Koyama, T. et al. Water Content in the Mantle Transition Zone Beneath the North Pacific Derived from the Electrical Conductivity Anomaly 171–179 (AGU Geophys. Monograph Series 168, 2006)

    Google Scholar 

  18. 18

    Schultz, A. & Pritchard, G. in Three Dimensional Electromagnetics (eds Spies, B. & Oristaglio, V.) 451–476 (Society of Exploration Geophysicists, 1999)

    Book  Google Scholar 

  19. 19

    Kuvshinov, A. & Olsen, N. A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted, and SAC-C magnetic data. Geophys. Res. Lett. 33 18301 10.1029/2006GL027083 (2006)

    ADS  Article  Google Scholar 

  20. 20

    Fujii, I. & Schultz, A. The 3D electromagnetic response of the Earth to ring current and auroral oval excitation. Geophys. J. Int. 151, 689–709 (2002)

    ADS  Article  Google Scholar 

  21. 21

    Schultz, A. & Larsen, J. C. On the electrical conductivity of the mid-mantle. 1. Calculation of equivalent scalar magnetotelluric response functions. Geophys. J. Int. 88, 733–761 (1987)

    ADS  Article  Google Scholar 

  22. 22

    Fukao, Y., Widiyantoro, S. & Obayashi, M. Stagnant slabs in the upper and lower mantle transition region. Rev. Geophys. 39, 291–324 (2001)

    ADS  Article  Google Scholar 

  23. 23

    Lawrence, J. F. & Shearer, P. M. Imaging mantle transition zone thickness with SdS-SS finite-frequency sensitivity kernels. Geophys. J. Int. 174, 143–158 (2008)

    ADS  Article  Google Scholar 

  24. 24

    Dasgupta, R., Hirschmann, M. M. & Withers, A. C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227, 73–85 (2004)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Yoshino, T. & Katsura, T. Effect of iron content on electrical conductivity of ringwoodite, with implications for electrical structure in the transition zone. Phys. Earth Planet. Inter. (in the press)

  26. 26

    Maruyama, S. & Okamoto, K. Water transportation from the subducting slab into the mantle transition zone. Gondwana Res. 11, 148–165 (2007)

    CAS  ADS  Article  Google Scholar 

  27. 27

    INTERMAGNET. Participating observatories (map). 〈http://www.intermagnet.org/Imomap_e.html

  28. 28

    Olsen, N. et al. CHAOS — a model of the Earth's magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006)

    ADS  Article  Google Scholar 

  29. 29

    Uyeshima, M. & Schultz, A. Geomagnetic induction in a heterogeneous sphere: a new three-dimensional forward solver using a conservative staggered-grid finite difference method. Geophys. J. Int. 140, 636–650 (2000)

    ADS  Article  Google Scholar 

  30. 30

    Kuvshinov, A. V., Olsen, N., Avdeev, D. B. & Pankratov, O. V. Electromagnetic induction in the oceans and the anomalous behaviour of coastal C-responses for periods up to 20 days. Geophys. Res. Lett. 29 1595 10.1029/2001GL014409 (2002)

    ADS  Article  Google Scholar 

  31. 31

    Evans, R. L. et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437, 249–252 (2005)

    CAS  ADS  Article  Google Scholar 

  32. 32

    Lizarralde, D., Chave, A., Hirth, G. & Schultz, A. Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data. J. Geophys. Res. 100 (B9). 17837–17854 (1995)

    ADS  Article  Google Scholar 

  33. 33

    Neal, S. L., Mackie, R. L., Larsen, J. C. & Schultz, A. Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean. J. Geophys. Res. 105 (B4). 8229–8242 (2000)

    ADS  Article  Google Scholar 

  34. 34

    Schultz, A., Kurtz, R. D., Chave, A. D. & Jones, A. G. Conductivity discontinuities in the upper-mantle beneath a stable craton. Geophys. Res. Lett. 20, 2941–2944 (1993)

    ADS  Article  Google Scholar 

  35. 35

    Egbert, G. D. & Booker, J. R. Very long period magnetotellurics at Tucson observatory — implications for mantle conductivity. J. Geophys. Res. 97, 15099–15112 (1992)

    ADS  Article  Google Scholar 

  36. 36

    Ichiki, M. et al. Upper mantle conductivity structure of the back-arc region beneath northeastern China. Geophys. Res. Lett. 28, 3773–3776 (2001)

    ADS  Article  Google Scholar 

  37. 37

    Utada, H., Koyama, T., Shimizu, H. & Chave, A. D. A. Semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys. Res. Lett. 30, 1194–1197 (2003)

    ADS  Article  Google Scholar 

  38. 38

    Kuvshinov, A., Utada, H., Avdeev, D. & Koyama, T. 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited. Geophys. J. Int. 160, 505–526 (2005)

    ADS  Article  Google Scholar 

  39. 39

    Olsen, N. The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr. Geophys. J. Int. 133, 298–308 (1998)

    ADS  Article  Google Scholar 

  40. 40

    Tarits, P., Hautot, S. & Perrier, F. Water in the mantle: results from electrical conductivity beneath the French Alps. Geophys. Res. Lett. 31 6612 10.1029/2003GL019277 (2004)

    ADS  Article  Google Scholar 

  41. 41

    Semenov, V. Y. & Jozwiak, W. Lateral variations of the mid-mantle conductance beneath Europe. Tectonophysics 416, 279–288 (2006)

    ADS  Article  Google Scholar 

  42. 42

    Goes, S., Spakman, W. & Bijwaard, H. A lower mantle source for central European volcanism. Science 286, 1928–1931 (1999)

    CAS  Article  Google Scholar 

  43. 43

    Gaillard, F., Malki, M., Iacono-Marziano, G., Pichavant, M. & Scaillet, B. Carbonatite melts and electrical conductivity in the asthenosphere. Science 322, 1363–1365 (2008)

    CAS  ADS  Article  Google Scholar 

  44. 44

    Hammouda, T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 214, 357–368 (2003)

    CAS  ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the US National Science Foundation (grant number EAR-0739111) and from the US National Aeronautics and Space Administration (grant number NNX08AG04G). A. Kuvshinov is thanked for help with the near-surface data correction.

Author Contributions A.S. provided the original forward solver and the data sets. The methods were developed jointly by G.E. and A.K. A.K. implemented the inversion and performed all computational experiments. All authors were involved in the interpretation of the results and creation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Kelbert.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kelbert, A., Schultz, A. & Egbert, G. Global electromagnetic induction constraints on transition-zone water content variations. Nature 460, 1003–1006 (2009). https://doi.org/10.1038/nature08257

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing