Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Near-field focusing and magnification through self-assembled nanoscale spherical lenses


It is well known that a lens-based far-field optical microscope cannot resolve two objects beyond Abbe’s diffraction limit. Recently, it has been demonstrated that this limit can be overcome by lensing effects driven by surface-plasmon excitation1,2,3, and by fluorescence microscopy driven by molecular excitation4. However, the resolution obtained using geometrical lens-based optics without such excitation schemes remains limited by Abbe’s law even when using the immersion technique5, which enhances the resolution by increasing the refractive indices of immersion liquids. As for submicrometre-scale or nanoscale objects, standard geometrical optics fails for visible light because the interactions of such objects with light waves are described inevitably by near-field optics6. Here we report near-field high resolution by nanoscale spherical lenses that are self-assembled by bottom-up integration7 of organic molecules. These nanolenses, in contrast to geometrical optics lenses, exhibit curvilinear trajectories of light, resulting in remarkably short near-field focal lengths. This in turn results in near-field magnification that is able to resolve features beyond the diffraction limit. Such spherical nanolenses provide new pathways for lens-based near-field focusing and high-resolution optical imaging at very low intensities, which are useful for bio-imaging, near-field lithography, optical memory storage, light harvesting, spectral signal enhancing, and optical nano-sensing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CHQ plano-spherical convex lenses.
Figure 2: Optical microscope/SEM images of CHQ lenses on patterned substrates.
Figure 3: Optical images and beam trajectories of alphabetical characters projected through CHQ lenses and PMMA disks.
Figure 4: Focal length changes for various sizes of CHQ lenses (fixed H/D = 0.35).


  1. Smolyaninov, I. I., Hung, Y.-J. & Davis, C. C. Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007)

    ADS  CAS  Article  Google Scholar 

  2. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007)

    ADS  CAS  Article  Google Scholar 

  3. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    ADS  CAS  Article  Google Scholar 

  4. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007)

    ADS  CAS  Article  Google Scholar 

  5. Yano, T., Shibata, S. & Kishi, T. Fabrication of micrometer-size glass solid immersion lens. Appl. Phys. B 83, 167–170 (2006)

    ADS  CAS  Article  Google Scholar 

  6. Merlin, R. Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing. Science 317, 927–929 (2007)

    ADS  CAS  Article  Google Scholar 

  7. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002)

    ADS  CAS  Article  Google Scholar 

  8. Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822 (2001)

    ADS  CAS  Article  Google Scholar 

  9. Lee, L. P. & Szema, R. Inspirations from biological optics for advanced photonic systems. Science 310, 1148–1150 (2005)

    ADS  CAS  Article  Google Scholar 

  10. Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)

    ADS  CAS  Article  Google Scholar 

  11. Yang, S. K. U., Chaitanya, T. E. L., Chen, G. & Aizenberg, J. Microlens arrays with integrated pores as a multipattern photomask. Appl. Phys. Lett. 86, 201121 (2005)

    ADS  Article  Google Scholar 

  12. Jeong, K.-H., Kim, J. & Lee, L. P. Biologically inspired artificial compound eyes. Science 312, 557–561 (2006)

    ADS  CAS  Article  Google Scholar 

  13. Fletcher, D. A., Goodson, K. E. & Kino, G. S. Focusing in microlenses close to a wavelength in diameter. Opt. Lett. 26, 399–401 (2001)

    ADS  CAS  Article  Google Scholar 

  14. Wu, H., Odom, T. W. & Whitesides, G. M. Connectivity of features in microlens array reduction photolithography: generation of various patterns with a single photomask. J. Am. Chem. Soc. 124, 7288–7289 (2002)

    CAS  Article  Google Scholar 

  15. Hong, B. H. et al. Self-assembled arrays of organic nanotubes with infinitely long one-dimensional H-bond chains. J. Am. Chem. Soc. 123, 10748–10749 (2001)

    CAS  Article  Google Scholar 

  16. Kim, K. S. et al. Assembling phenomena of calix[4]hydroquinone nanotube bundles by one-dimensional short hydrogen bonding and displaced π-π stacking. J. Am. Chem. Soc. 124, 14268–14279 (2002)

    CAS  Article  Google Scholar 

  17. Kim, K. S., Tarakeshwar, P. & Lee, J. Y. Molecular clusters of π-systems: theoretical studies of structures, spectra and origin of interaction energies. Chem. Rev. 100, 4145–4186 (2000)

    CAS  Article  Google Scholar 

  18. Hong, B. H., Bae, S. C., Lee, C.-W., Jeong, S. & Kim, K. S. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294, 348–351 (2001)

    ADS  CAS  Article  Google Scholar 

  19. Fujita, J., Ohnishi, Y., Ochiai, Y. & Matsui, S. Ultrahigh resolution of calixarene negative resist in electron beam lithography. Appl. Phys. Lett. 68, 1297–1299 (1996)

    ADS  CAS  Article  Google Scholar 

  20. Goldstein, D. J. Resolution in light microscopy studied by computer simulations. J. Microsc. 166, 185–197 (1992)

    Article  Google Scholar 

  21. Taflove, A. & Hagness, S. C. Computational Electrodynamics: The Finite-difference Time-domain Method (Artech House, 2000)

    MATH  Google Scholar 

  22. Simpson, G. J. Biological imaging: the diffraction barrier broken. Nature 440, 879–880 (2006)

    ADS  CAS  Article  Google Scholar 

  23. Lewis, A. et al. Near-field optics: from subwavelength illumination to nanometric shadowing. Nature Biotechnol. 21, 1378–1386 (2003)

    CAS  Article  Google Scholar 

  24. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    ADS  CAS  Article  Google Scholar 

  25. Parimi, P. V., Lu, W. T., Vodo, P. & Sridhar, S. Photonic crystals: imaging by flat lens using negative refraction. Nature 426, 404 (2003)

    ADS  CAS  Article  Google Scholar 

  26. Chatterjee, R. et al. Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range. Phys. Rev. Lett. 100, 187401 (2008)

    ADS  CAS  Article  Google Scholar 

  27. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  CAS  Article  Google Scholar 

  28. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    ADS  CAS  Article  Google Scholar 

Download references


We thank T. F. Heinz, C. K. Hong, J. H. Lee and W. J. Kim for discussions, and K. Cho, J. T. Han, J. W. Lee and C. S. Lee for assisting in characterization. This work was supported by the Korea Foundation for International Cooperation of Science and Technology (Global Research Laboratory programme), Korea Science and Engineering Foundation grants funded by the Korea Government (World Class University, R32-2008-000-10180-0, R33-2008-000-10138-0; EPB Center, 2009-0063312; 2009-0062808; 2009-0060271), the Brain Korea 21 (Korea Research Foundation), the National Science Foundation (NSF: CHE-0641523; ECCS-0747787) and the New York State Office of Science (NYSTAR).

Author Contributions J.Y.L. and B.H.H. conducted experiments (synthesis, characterization, optical measurements). Y.K. assisted in synthesis. R.B., B.H.H. and C.W.W. conducted electromagnetic simulations, and W.Y.K., S.K.M. and M.V.J. analysed the simulation results. L.J.K. assisted in the high-resolution optical imaging analysis. I.-C.H. conducted lens transfer and lens array formation. Keun S. Kim and J.Y.L. obtained micro-Raman spectra. P.K. supervised optical measurements. Kwang S. Kim supervised the whole project.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Philip Kim or Kwang S. Kim.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S15 with Legends, Supplementary Discussions and Data and Supplementary References. (PDF 1203 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, J., Hong, B., Kim, W. et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 460, 498–501 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing