Mechanisms promoting translocations in editing and switching peripheral B cells


Variable, diversity and joining gene segment (V(D)J) recombination assembles immunoglobulin heavy or light chain (IgH or IgL) variable region exons in developing bone marrow B cells, whereas class switch recombination (CSR) exchanges IgH constant region exons in peripheral B cells. Both processes use directed DNA double-strand breaks (DSBs) repaired by non-homologous end-joining (NHEJ). Errors in either V(D)J recombination or CSR can initiate chromosomal translocations, including oncogenic IgH locus (Igh) to c-myc (also known as Myc) translocations of peripheral B cell lymphomas. Collaboration between these processes has also been proposed to initiate translocations. However, the occurrence of V(D)J recombination in peripheral B cells is controversial. Here we show that activated NHEJ-deficient splenic B cells accumulate V(D)J-recombination-associated breaks at the lambda IgL locus (Igl), as well as CSR-associated Igh breaks, often in the same cell. Moreover, Igl and Igh breaks are frequently joined to form translocations, a phenomenon associated with specific Igh–Igl co-localization. Igh and c-myc also co-localize in these cells; correspondingly, the introduction of frequent c-myc DSBs robustly promotes Igh–c-myc translocations. Our studies show peripheral B cells that attempt secondary V(D)J recombination, and determine a role for mechanistic factors in promoting recurrent translocations in tumours.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Role of AID and RAG in generating Igh, Igk and Igl breaks in CD21-cre, Xrcc4c/- splenic B cells.
Figure 2: Frequent Igh–Igl translocations in activated XRCC4-deficient splenic B cells.
Figure 3: Frequent cell-type and Igλ locus-specific Igh and Igl co-localization.
Figure 4: DSBs in c-myc are rate-limiting for Igh–c-myc translocations in activated splenic B cells.


  1. 1

    Jung, D. & Alt, F. W. Unraveling V(D)J recombination; insights into gene regulation. Cell 116, 299–311 (2004)

    CAS  Article  Google Scholar 

  2. 2

    Rooney, S., Chaudhuri, J. & Alt, F. W. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol. Rev. 200, 115–131 (2004)

    CAS  Article  Google Scholar 

  3. 3

    Bassing, C. H., Swat, W. & Alt, F. W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109, S45–S55 (2002)

    CAS  Article  Google Scholar 

  4. 4

    Gorman, J. R. & Alt, F. W. Regulation of immunoglobulin light chain isotype expression. Adv. Immunol. 69, 113–181 (1998)

    CAS  Article  Google Scholar 

  5. 5

    Gay, D., Saunders, T., Camper, S. & Weigert, M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177, 999–1008 (1993)

    CAS  Article  Google Scholar 

  6. 6

    Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993)

    CAS  Article  Google Scholar 

  7. 7

    Nemazee, D. Receptor editing in lymphocyte development and central tolerance. Nature Rev. Immunol. 6, 728–740 (2006)

    CAS  Article  Google Scholar 

  8. 8

    Jankovic, M., Casellas, R., Yannoutsos, N., Wardemann, H. & Nussenzweig, M. C. RAGs and regulation of autoantibodies. Annu. Rev. Immunol. 22, 485–501 (2004)

    CAS  Article  Google Scholar 

  9. 9

    Chaudhuri, J. et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv. Immunol. 94, 157–214 (2007)

    CAS  Article  Google Scholar 

  10. 10

    Yan, C. T. et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449, 478–482 (2007)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Nemazee, D. & Weigert, M. Revising B cell receptors. J. Exp. Med. 191, 1813–1817 (2000)

    CAS  Article  Google Scholar 

  12. 12

    Seagal, J. & Melamed, D. Role of receptor revision in forming a B cell repertoire. Clin. Immunol. 105, 1–8 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Wilson, P. C. et al. Receptor revision of immunoglobulin heavy chain variable region genes in normal human B lymphocytes. J. Exp. Med. 191, 1881–1894 (2000)

    CAS  Article  Google Scholar 

  14. 14

    Goossens, T., Brauninger, A., Klein, U., Kuppers, R. & Rajewsky, K. Receptor revision plays no major role in shaping the receptor repertoire of human memory B cells after the onset of somatic hypermutation. Eur. J. Immunol. 31, 3638–3648 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001)

    CAS  Article  Google Scholar 

  16. 16

    Janz, S. Myc translocations in B cell and plasma cell neoplasms. DNA Repair (Amst.) 5, 1213–1224 (2006)

    CAS  Article  Google Scholar 

  17. 17

    Gostissa, M., Ranganath, S., Bianco, J. M. & Alt, F. W. Chromosomal location targets different MYC family gene members for oncogenic translocations. Proc. Natl Acad. Sci. USA 106, 2265–2270 (2009)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Kozubek, S. et al. Distribution of ABL and BCR genes in cell nuclei of normal and irradiated lymphocytes. Blood 89, 4537–4545 (1997)

    CAS  PubMed  Google Scholar 

  19. 19

    Neves, H., Ramos, C., da Silva, M. G., Parreira, A. & Parreira, L. The nuclear topography of ABL, BCR, PML, and RARα genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 93, 1197–1207 (1999)

    CAS  PubMed  Google Scholar 

  20. 20

    Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nature Genet. 34, 287–291 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Osborne, C. S. et al. Myc dynamically and preferentially relocates to a transcription factory occupied by IgH. PLoS Biol. 5, e192 (2007)

    Article  Google Scholar 

  23. 23

    Meaburn, K. J., Misteli, T. & Soutoglou, E. Spatial genome organization in the formation of chromosomal translocations. Semin. Cancer Biol. 17, 80–90 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Tsai, A. G. et al. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135, 1130–1142 (2008)

    CAS  Article  Google Scholar 

  25. 25

    Mahowald, G. K., Baron, J. M. & Sleckman, B. P. Collateral damage from antigen receptor gene diversification. Cell 135, 1009–1012 (2008)

    CAS  Article  Google Scholar 

  26. 26

    Ramiro, A. R. et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118, 431–438 (2004)

    CAS  Article  Google Scholar 

  27. 27

    Ramiro, A. et al. The role of activation-induced deaminase in antibody diversification and chromosome translocations. Adv. Immunol. 94, 75–107 (2007)

    CAS  Article  Google Scholar 

  28. 28

    Kovalchuk, A. L. et al. AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements. J. Exp. Med. 204, 2989–3001 (2007)

    CAS  Article  Google Scholar 

  29. 29

    Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008)

    CAS  Article  Google Scholar 

  30. 30

    Jager, U. et al. Follicular lymphomas’ BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 95, 3520–3529 (2000)

    CAS  PubMed  Google Scholar 

  31. 31

    Lieber, M. R., Yu, K. & Raghavan, S. C. Roles of nonhomologous DNA end joining, V(D)J recombination, and class switch recombination in chromosomal translocations. DNA Repair (Amst.) 5, 1234–1245 (2006)

    CAS  Article  Google Scholar 

  32. 32

    Callen, E. et al. ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell 130, 63–75 (2007)

    CAS  Article  Google Scholar 

  33. 33

    Li, Z. et al. The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83, 1079–1089 (1995)

    CAS  Article  Google Scholar 

  34. 34

    Gao, Y. et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891–902 (1998)

    CAS  Article  Google Scholar 

  35. 35

    Soulas-Sprauel, P. et al. Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination. J. Exp. Med. 204, 1717–1727 (2007)

    CAS  Article  Google Scholar 

  36. 36

    Wang, J. H. et al. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J. Exp. Med. 205, 3079–3090 (2008)

    CAS  Article  Google Scholar 

  37. 37

    Kraus, M., Alimzhanov, M. B., Rajewsky, N. & Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igα/β heterodimer. Cell 117, 787–800 (2004)

    CAS  Article  Google Scholar 

  38. 38

    Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000)

    CAS  Article  Google Scholar 

  39. 39

    Gartner, F., Alt, F. W., Monroe, R. J. & Seidl, K. J. Antigen-independent appearance of recombination activating gene (RAG)-positive bone marrow B cells in the spleens of immunized mice. J. Exp. Med. 192, 1745–1754 (2000)

    CAS  Article  Google Scholar 

  40. 40

    Hao, Z. & Rajewsky, K. Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J. Exp. Med. 194, 1151–1164 (2001)

    CAS  Article  Google Scholar 

  41. 41

    Schrader, C. E., Linehan, E. K., Mochegova, S. N., Woodland, R. T. & Stavnezer, J. Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J. Exp. Med. 202, 561–568 (2005)

    CAS  Article  Google Scholar 

  42. 42

    Plessis, A., Perrin, A., Haber, J. E. & Dujon, B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130, 451–460 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Zarrin, A. A. et al. Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science 315, 377–381 (2007)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Lahvis, G. P. & Cerny, J. Induction of germinal center B cell markers in vitro by activated CD4+ T lymphocytes: the role of CD40 ligand, soluble factors, and B cell antigen receptor cross-linking. J. Immunol. 159, 1783–1793 (1997)

    CAS  PubMed  Google Scholar 

  45. 45

    Monroe, R. J. et al. RAG2:GFP knockin mice reveal novel aspects of RAG2 expression in primary and peripheral lymphoid tissues. Immunity 11, 201–212 (1999)

    CAS  Article  Google Scholar 

  46. 46

    Yu, W. et al. Continued RAG expression in late stages of B cell development and no apparent re-induction after immunization. Nature 400, 682–687 (1999)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301 (2001)

    CAS  Article  Google Scholar 

  48. 48

    Zhu, C. et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 (2002)

    CAS  Article  Google Scholar 

  49. 49

    Roth, D. B. Amplifying mechanisms of lymphomagenesis. Mol. Cell 10, 1–2 (2002)

    CAS  Article  Google Scholar 

  50. 50

    McVey, M. & Lee, S. E. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 24, 529–538 (2008)

    CAS  Article  Google Scholar 

Download references


We thank Alt laboratory members for discussions, and Y. L. Chen, J. M. Bianco and M. Moghimi for technical assistance. This work was supported by the National Insitutes of Health (NIH) grant 5P01CA92625 and a Leukemia and Lymphoma Society of America (LLS) SCORE grant to F.W.A. and K.R. M.G. is and J.H.W. was a Special Fellow of the LLS. J.H.W. and D.R.W. are supported by an NIH training grant and C.T.Y. was supported by an NCI training grant. A.N. is supported by the Intramural Research program of the NIH, NCI, Center for Cancer Research. F.W.A. is an Investigator of the Howard Hughes Medical Institute.

Author Contributions F.W.A., J.H.W., M.G. and C.T.Y. planned studies and interpreted data. J.H.W. performed most experiments, including mouse breeding, B cell studies, FISH, and Igh and Igl PCR studies. C.T.Y. bred mice and performed B cell analyses. M.G. generated and analysed c-myc25IsceI/WT mice and performed FISH and Igh–c-myc translocation studies. P.G., T.H., and E.H. provided technical assistance. S.D. and A.N. provided expertise in 3D interphase FISH. A.A.Z. generated the 25 IsceI array. D.R.W. performed RAG expression studies and mesenteric lymph node B cell analyses. K.R. provided RAG conditional knockout mice and helped interpret data. F.W.A., J.H.W. and M.G. wrote the paper.

Author information



Corresponding author

Correspondence to Frederick W. Alt.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-15 with Legends and Supplementary Tables 1-16. (PDF 5154 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, J., Gostissa, M., Yan, C. et al. Mechanisms promoting translocations in editing and switching peripheral B cells. Nature 460, 231–236 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.