Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A ‘granocentric’ model for random packing of jammed emulsions


Packing problems are ubiquitous1,2, ranging from oil extraction through porous rocks to grain storage in silos and the compaction of pharmaceutical powders into tablets. At a given density, particulate systems pack into a mechanically stable and amorphous jammed state3,4. Previous theoretical studies have explored a connection between this jammed state and the glass transition4,5,6,7,8, the thermodynamics of jamming9,10,11,12 and geometric modelling of random packings13,14,15. Nevertheless, a simple underlying mechanism for the random assembly of athermal particles, analogous to crystalline ordering, remains unknown. Here we use three-dimensional measurements of packings of polydisperse emulsion droplets to build a simple statistical model in which the complexity of the global packing is distilled into a local stochastic process. From the perspective of a single particle, the packing problem is reduced to the random formation of nearest neighbours, followed by a choice of contacts among them. The two key parameters in the model—the available space around a particle and the ratio of contacts to neighbours—are directly obtained from experiments. We demonstrate that this ‘granocentric’ view captures the properties of the polydisperse emulsion packing—ranging from the microscopic distributions of nearest neighbours and contacts, to local density fluctuations, to the global packing density. Application of our results to monodisperse and bidisperse systems produces quantitative agreement with previously measured trends in global density16. Our model therefore reveals a general principle of organization for random packing and may provide the foundations for a theory of jammed matter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Microstructure of random polydisperse emulsions.
Figure 2: Granocentric view of random packing.
Figure 3: Comparison of model predictions with experiments.


  1. 1

    Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    ADS  Article  Google Scholar 

  2. 2

    de Gennes, P. G. Granular matter: a tentative view. Rev. Mod. Phys. 71, S374–S382 (1999)

    Article  Google Scholar 

  3. 3

    Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 1841–1844 (1998)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Liu, A. J. & Nagel, S. R. Nonlinear dynamics: jamming is not just cool anymore. Nature 396, 21–22 (1998)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Barrat, A., Kurchan, J., Loreto, V. & Sellitto, M. Edwards' measures for powders and glasses. Phys. Rev. Lett. 85, 5034–5037 (2000)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Coniglio, A., Fierro, A., Herrmann, H. J. & Nicodemi, M. Unifying Concepts in Granular Media and Glasses: From the Statistical Mechanics of Granular Media to the Theory of Jamming (Elsevier Science, 2004)

    Google Scholar 

  7. 7

    Corwin, E. I., Jaeger, H. M. & Nagel, S. R. Structural signature of jamming in granular media. Nature 435, 1075–1078 (2005)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Parisi, G. & Zamponi, F. Mean field theory of the glass transition and jamming of hard spheres. Preprint at 〈〉 (2008)

  9. 9

    Edwards, S. & Oakeshott, R. Theory of powders. Physica A 157, 1080–1090 (1989)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10

    Lechenault, F., da Cruz, F., Dauchot, O. & Bertin, E. Free volume distributions and compactivity measurement in bidimensional granular packing. J. Stat. Mech. Theory Exp. P07009 (2006)

  11. 11

    Aste, T. Volume fluctuations and geometrical constraints in granular packs. Phys. Rev. Lett. 96, 018002 (2006)

    ADS  Article  Google Scholar 

  12. 12

    Song, C., Wang, P. & Makse, H. A. A phase diagram for jammed matter. Nature 453, 629–632 (2008)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Gotoh, K. & Finney, J. Statistical geometrical approach to random packing density of equal spheres. Nature 252, 202–205 (1974)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Dodds, J. Simplest statistical geometric model of simplest version of multicomponent random packing problem. Nature 256, 187–189 (1975)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Dodds, J. The porosity and contact points in multicomponent random sphere packings calculated by a simple statistical geometric model. J. Colloid. Interface Sci. 77, 317–327 (1980)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Yerazunis, S., Cornell, S. & Wintner, B. Dense random packing of binary mixtures of spheres. Nature 207, 835–837 (1965)

    ADS  Article  Google Scholar 

  17. 17

    Liu, C. H. et al. Force fluctuations in bead packs. Science 269, 513–515 (1995)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Brujić, J. et al. 3d bulk measurements of the force distribution in a compressed emulsion system. Faraday Discuss. 123, 207–220 (2003)

    ADS  Article  Google Scholar 

  19. 19

    Majmudar, T. & Behringer, R. Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Zhou, J., Long, S., Wang, Q. & Dinsmore, A. Measurement of forces inside a three-dimensional pile of frictionless droplets. Science 312, 1631–1633 (2006)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Bernal, J. Geometrical approach to the structure of liquids. Nature 183, 141–147 (1959)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Brujić, J. et al. Measuring the coordination number and entropy of a 3d jammed emulsion packing by confocal microscopy. Phys. Rev. Lett. 98, 248001 (2007)

    ADS  Article  Google Scholar 

  23. 23

    Donev, A. et al. Improving the density of jammed disordered packing using ellipsoids. Science 303, 990–993 (2004)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Torquato, S., Truskett, T. M. & Debenedetti, P. G. Is random close packing of spheres well defined? Phys. Rev. Lett. 84, 2064–2067 (2000)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Richard, P., Oger, L. & Troadec, J.-P. A model of binary assemblies of spheres. Eur. Phys. J. E 6, 295–303 (2001)

    CAS  Article  Google Scholar 

  26. 26

    Finney, J. Random packings and structure of simple liquids. Proc. R. Soc. Lond. A 319, 479–493 (1970)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Alexander, S. Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep. 296, 65–236 (1998)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Kamien, R. & Liu, A. Why is random close packing reproducible? Phys. Rev. Lett. 99, 155501 (2007)

    ADS  Article  Google Scholar 

  29. 29

    Aste, T., Saadaftar, M. & Senden, T. Local and global relations between the number of contacts and density in monodisperse sphere packs. J. Stat. Mech. Theory Exp. P07010 (2006)

  30. 30

    Schmitt, V., Leal-Calderon, F. & Bibette, J. in Topics in Current Chemistry Vol. 227, Colloid Chemistry II (ed. Antonietti, M.) 195–215 (Springer, 2003)

    Google Scholar 

Download references


We thank G. Ben Arous, S. T. Bramwell, P. M. Chaikin, I. Z. Corwin, J.-B. Gouéré, P. C. W. Holdsworth, D. Levine, D. J. Pine and J. R. Royer for discussions and comments. J.B. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. This work was partially supported by NYU MRSEC Award DMR:0820341.

Author Contributions M.C. and E.I.C. contributed equally to this Letter and are listed in alphabetical order.

Author information



Corresponding author

Correspondence to Jasna Brujić.

Supplementary information

Supplementary Information

This file contains Supplementary Data and Supplementary Figures A-H and Supplementary Figure 1 with Legends. (PDF 1262 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clusel, M., Corwin, E., Siemens, A. et al. A ‘granocentric’ model for random packing of jammed emulsions. Nature 460, 611–615 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing