Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The structure and function of G-protein-coupled receptors

Abstract

G-protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants, and so have great potential as therapeutic targets for a broad spectrum of diseases. They are also fascinating molecules from the perspective of membrane-protein structure and biology. Great progress has been made over the past three decades in understanding diverse GPCRs, from pharmacology to functional characterization in vivo. Recent high-resolution structural studies have provided insights into the molecular mechanisms of GPCR activation and constitutive activity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Signal transduction in G-protein-coupled receptors.
Figure 2: Comparison of four GPCR structures.
Figure 3: Comparison of conserved regions of four GPCR structures.
Figure 4: The structure of opsin obtained at low pH represents an active form of rhodopsin.

References

  1. 1

    Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003). This paper provides a comprehensive analysis of sequence relationships between G-protein-coupled receptors in the human genome.

    CAS  Article  Google Scholar 

  2. 2

    Hoffman, B. B. & Lefkowitz, R. J. Adrenergic receptors in the heart. Annu. Rev. Physiol. 44, 475–484 (1982).

    CAS  Article  Google Scholar 

  3. 3

    Samama, P., Pei, G., Costa, T., Cotecchia, S. & Lefkowitz, R. J. Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor. Mol. Pharmacol. 45, 390–394 (1994).

    CAS  PubMed  Google Scholar 

  4. 4

    Chidiac, P., Hebert, T. E., Valiquette, M., Dennis, M. & Bouvier, M. Inverse agonist activity of beta-adrenergic antagonists. Mol. Pharmacol. 45, 490–499 (1994).

    CAS  PubMed  Google Scholar 

  5. 5

    Xiao, R. P., Cheng, H., Zhou, Y. Y., Kuschel, M. & Lakatta, E. G. Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ. Res. 85, 1092–1100 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Shenoy, S. K. et al. Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Azzi, M. et al. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl Acad. Sci. USA 100, 11406–11411 (2003).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Freedman, N. J. & Lefkowitz, R. J. Desensitization of G protein-coupled receptors. Recent Prog. Horm. Res. 51, 319–351; discussion 352–353 (1996).

    CAS  PubMed  Google Scholar 

  9. 9

    Hanyaloglu, A. C. & von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Terrillon, S. & Bouvier, M. Roles of G-protein-coupled receptor dimerization. EMBO Rep. 5, 30–34 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Insel, P. A. et al. Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann. NY Acad. Sci. 1047, 166–172 (2005).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Ghanouni, P., Steenhuis, J. J., Farrens, D. L. & Kobilka, B. K. Agonist-induced conformational changes in the G-protein-coupling domain of the beta 2 adrenergic receptor. Proc. Natl Acad. Sci. USA 98, 5997–6002 (2001).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Swaminath, G. et al. Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. J. Biol. Chem. 279, 686–691 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Swaminath, G. et al. Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol. Chem. 280, 22165–22171 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Galandrin, S., Oligny-Longpre, G. & Bouvier, M. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28, 423–430 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Wisler, J. W. et al. A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc. Natl Acad. Sci. USA 104, 16657–16662 (2007).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Kobilka, B. K. & Deupi, X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 28, 397–406 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Krebs, A., Villa, C., Edwards, P. C. & Schertler, G. F. Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. J. Mol. Biol. 282, 991–1003 (1998).

    CAS  Article  Google Scholar 

  19. 19

    Schertler, G. F., Villa, C. & Henderson, R. Projection structure of rhodopsin. Nature 362, 770–772 (1993). This paper presents the first three-dimensional structure of a G-protein-coupled receptor using cryoelectron microscopy of two-dimensional crystals.

    ADS  CAS  Article  Google Scholar 

  20. 20

    Rasmussen, S. G. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007). This is the first reported three-dimensional crystal structure of a ligand-activated G-protein-coupled receptor.

    ADS  CAS  Article  Google Scholar 

  21. 21

    Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G-protein-coupled receptor. Science 318, 1258–1265 (2007).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Hanson, M. A. et al. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16, 897–905 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Jaakola, V. P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Palczewski, K. et al. Crystal structure of rhodopsin: A G-protein-coupled receptor. Science 289, 739–745 (2000). This paper presents the first three-dimensional crystal structure of a G-protein-coupled receptor, the visual photoreceptor rhodopsin.

    ADS  CAS  Article  Google Scholar 

  27. 27

    Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein coupled receptors. Methods Neurosci. 25, 366–428 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Shi, L. et al. β2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J. Biol. Chem. 277, 40989–40996 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Horn, F. et al. GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res. 31, 294–297 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Conn, P. J., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nature Rev. Drug Discov. 8, 41–54 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Baker, J. G. The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors. Br. J. Pharmacol. 144, 317–322 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Sugimoto, Y. et al. β1-selective agonist (-)-1-(3,4-dimethoxyphenetylamino)-3-(3,4-dihydroxy)-2-propanol [(-)-RO363] differentially interacts with key amino acids responsible for β1-selective binding in resting and active states. J. Pharmacol. Exp. Ther. 301, 51–58 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Vogel, R. et al. Functional role of the “ionic lock”—an interhelical hydrogen-bond network in family A heptahelical receptors. J. Mol. Biol. 380, 648–655 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Ballesteros, J. A. et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Rasmussen, S. G. et al. Mutation of a highly conserved aspartic acid in the β2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Mol. Pharmacol. 56, 175–184 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Yao, X. et al. Coupling ligand structure to specific conformational switches in the β2-adrenoceptor. Nature Chem. Biol. 2, 417–422 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Bond, R. A. & Ijzerman, A. P. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol. Sci. 27, 92–96 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Barak, L. S., Menard, L., Ferguson, S. S., Colapietro, A. M. & Caron, M. G. The conserved seven-transmembrane sequence NP(X)2,3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the β2-adrenergic receptor. Biochemistry 34, 15407–15414 (1995).

    CAS  Article  Google Scholar 

  41. 41

    Okada, T. et al. Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography. Proc. Natl Acad. Sci. USA 99, 5982–5987 (2002).

    ADS  CAS  Article  Google Scholar 

  42. 42

    Pardo, L., Deupi, X., Dolker, N., Lopez-Rodriguez, M. L. & Campillo, M. The role of internal water molecules in the structure and function of the rhodopsin family of G protein-coupled receptors. ChemBioChem 8, 19–24 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Dixon, R. A. et al. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79 (1986). This paper reports the cloning of the first ligand-activated G-protein-coupled receptor.

    ADS  CAS  Article  Google Scholar 

  44. 44

    Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W. & Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008).

    ADS  CAS  Article  Google Scholar 

  45. 45

    Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008). This paper presents the high-resolution stucture of an active-state G-protein-coupled receptor in complex with a G-protein peptide.

    ADS  CAS  Article  Google Scholar 

  46. 46

    Lamb, T. D. & Pugh, E. N. Jr. Dark adaptation and the retinoid cycle of vision. Prog. Retin. Eye Res. 23, 307–380 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Vogel, R. & Siebert, F. Conformations of the active and inactive states of opsin. J. Biol. Chem. 276, 38487–38493 (2001).

    CAS  Article  Google Scholar 

  48. 48

    Cohen, G. B., Oprian, D. D. & Robinson, P. R. Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. Biochemistry 31, 12592–12601 (1992).

    CAS  Article  Google Scholar 

  49. 49

    Ahuja, S. et al. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nature Struct. Mol. Biol. 16, 168–175 (2009).

    CAS  Article  Google Scholar 

  50. 50

    Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996). This is the first biophysical study to demonstrate movement of transmembrane segment 6 upon activation of rhodopsin.

    ADS  CAS  Article  Google Scholar 

  51. 51

    Altenbach, C., Kusnetzow, A. K., Ernst, O. P., Hofmann, K. P. & Hubbell, W. L. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc. Natl Acad. Sci. USA 105, 7439–7444 (2008).

    ADS  CAS  Article  Google Scholar 

  52. 52

    Strader, C. D., Candelore, M. R., Hill, W. S., Sigal, I. S. & Dixon, R. A. Identification of two serine residues involved in agonist activation of the β-adrenergic receptor. J. Biol. Chem. 264, 13572–13578 (1989).

    CAS  PubMed  Google Scholar 

  53. 53

    Liapakis, G. et al. The forgotten serine. A critical role for Ser-2035.42 in ligand binding to and activation of the β2-adrenergic receptor. J. Biol. Chem. 275, 37779–37788 (2000).

    CAS  Article  Google Scholar 

  54. 54

    Strader, C. D. et al. Conserved aspartic acid residues 79 and 113 of the β-adrenergic receptor have different roles in receptor function. J. Biol. Chem. 263, 10267–10271 (1988).

    CAS  PubMed  Google Scholar 

  55. 55

    Jiang, Q., Lee, B. X., Glashofer, M., van Rhee, A. M. & Jacobson, K. A. Mutagenesis reveals structure-activity parallels between human A2A adenosine receptors and biogenic amine G protein-coupled receptors. J. Med. Chem. 40, 2588–2595 (1997).

    CAS  Article  Google Scholar 

  56. 56

    Patny, A., Desai, P. V. & Avery, M. A. Homology modeling of G-protein-coupled receptors and implications in drug design. Curr. Med. Chem. 13, 1667–1691 (2006).

    CAS  Article  Google Scholar 

  57. 57

    Kolb, P. et al. Structure-based discovery of β2-adrenergic receptor ligands. Proc. Natl Acad. Sci. USA 106, 6843–6848 (2009).

    ADS  CAS  Article  Google Scholar 

  58. 58

    Ghanouni, P. et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β2 adrenergic receptor. J. Biol. Chem. 276, 24433–24436 (2001).

    CAS  Article  Google Scholar 

  59. 59

    Salom, D. et al. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 16123–16128 (2006).

    ADS  CAS  Article  Google Scholar 

  60. 60

    Knierim, B., Hofmann, K. P., Ernst, O. P. & Hubbell, W. L. Sequence of late molecular events in the activation of rhodopsin. Proc. Natl Acad. Sci. USA 104, 20290–20295 (2007).

    ADS  CAS  Article  Google Scholar 

  61. 61

    De Lean, A., Stadel, J. M. & Lefkowitz, R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980).

    CAS  PubMed  Google Scholar 

  62. 62

    Hubbell, W. L., Altenbach, C., Hubbell, C. M. & Khorana, H. G. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv. Protein Chem. 63, 243–290 (2003).

    CAS  Article  Google Scholar 

  63. 63

    Werner, K., Richter, C., Klein-Seetharaman, J. & Schwalbe, H. Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J. Biomol. NMR 40, 49–53 (2008).

    CAS  Article  Google Scholar 

  64. 64

    Standfuss, J. et al. Crystal structure of a thermally stable rhodopsin mutant. J. Mol. Biol. 372, 1179–1188 (2007).

    CAS  Article  Google Scholar 

  65. 65

    Okada, T. et al. X-ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. J. Struct. Biol. 130, 73–80 (2000).

    CAS  Article  Google Scholar 

  66. 66

    Serrano-Vega, M. J., Magnani, F., Shibata, Y. & Tate, C. G. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. Proc. Natl Acad. Sci. USA 105, 877–882 (2008).

    ADS  CAS  Article  Google Scholar 

  67. 67

    Day, P. W. et al. A monoclonal antibody for G protein-coupled receptor crystallography. Nature Methods 4, 927–929 (2007).

    CAS  Article  Google Scholar 

  68. 68

    Faham, S. & Bowie, J. U. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316, 1–6 (2002).

    CAS  Article  Google Scholar 

  69. 69

    Faham, S. et al. Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci. 14, 836–840 (2005).

    CAS  Article  Google Scholar 

  70. 70

    Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, doi:10.1146/annurev.biophys.050708.133655 (2008).

Download references

Acknowledgements

This work was supported by the US National Institute of General Medical Sciences (grant F32 GM082028 to D.M.R. and grant RO1-GM083118 to B. K.), the Lundbeck Foundation (to S.G.F.R.), the National Institute of Neurological Disorders and Stroke (grant RO1-NS28471 to B.K.) and the Mather Charitable Foundation (to B. K.).

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to B.K.K. (kobilka@stanford.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosenbaum, D., Rasmussen, S. & Kobilka, B. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009). https://doi.org/10.1038/nature08144

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing