Optically controlled locking of the nuclear field via coherent dark-state spectroscopy

Abstract

A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices1,2,3,4,5,6. In group III–V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction7,8,9, while the dynamics of the single spin also influence the nuclear environment10,11,12,13,14,15. Recent efforts12,16 have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T2*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T2* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of ‘spin echo’-type techniques8,12. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Laser frequency sweep direction dependent probe absorption spectrum.
Figure 2: Time-dependent probe absorption spectrum with fixed laser frequencies.
Figure 3: The observation of the enhancement of electron spin T2*.
Figure 4: Theoretical explanation of the nuclear field self-locking effect through the DNP feedback process.

References

  1. 1

    Berezovsky, J. et al. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Bracker, A. S. et al. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots. Phys. Rev. Lett. 94, 047402 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Gammon, D. & Steel, D. G. Optical studies of single quantum dots. Phys. Today 55, 36–41 (2002)

    CAS  Article  Google Scholar 

  4. 4

    Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kim, D. et al. and nondestructive measurement in a quantum dot molecule. Phys. Rev. Lett. 101, 236804 (2008)

    ADS  Article  Google Scholar 

  6. 6

    Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Merkulov, I. A., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002)

    ADS  Article  Google Scholar 

  8. 8

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Baugh, J., Kitamura, Y., Ono, K. & Tarucha, S. Large nuclear Overhauser fields detected in vertically coupled double quantum dots. Phys. Rev. Lett. 99, 096804 (2007)

    ADS  Article  Google Scholar 

  10. 10

    Tartakovskii, A. I. et al. Nuclear spin switch in semiconductor quantum dots. Phys. Rev. Lett. 98, 026806 (2007)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Eble, B. et al. Dynamic nuclear polarization of a single charge-tunable InAs/GaAs quantum dot. Phys. Rev. B 74, 081306 (2006)

    ADS  Article  Google Scholar 

  12. 12

    Greilich, A. et al. Nuclei-induced frequency focusing of electron spin coherence. Science 317, 1896–1899 (2007)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Koppens, F. H. L. et al. Control and detection of singlet-triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Maletinsky, P., Lai, C. W., Badolato, A. & Imamoglu, A. Nonlinear dynamics of quantum dot nuclear spins. Phys. Rev. B 75, 035409 (2007)

    ADS  Article  Google Scholar 

  15. 15

    Vink, I. T. et al. Locking electron spins into magnetic resonance by electron-nuclear feedback. Preprint at <http://arxiv.org/abs/0902.2659> (2009)

  16. 16

    Reilly, D. J. et al. Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Xu, X. D. et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007)

    ADS  Article  Google Scholar 

  18. 18

    Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Stepanenko, D., Burkard, G., Giedke, G. & Imamoglu, A. Enhancement of electron spin coherence by optical preparation of nuclear spins. Phys. Rev. Lett. 96, 136401–136404 (2006)

    ADS  Article  Google Scholar 

  21. 21

    Braun, P. F. et al. Direct observation of the electron spin relaxation induced by nuclei in quantum dots. Phys. Rev. Lett. 94, 116601 (2005)

    ADS  Article  Google Scholar 

  22. 22

    Eble, B. et al. Hole–nuclear spin interaction in quantum dots. Phys. Rev. Lett. 102, 146601–146604 (2009)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Fischer, J., Coish, W. A., Bulaev, D. V. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008)

    ADS  Article  Google Scholar 

  24. 24

    Kikkawa, J. M. & Awschalom, D. D. All-optical magnetic resonance in semiconductors. Science 287, 473–476 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Gammon, D. et al. Nuclear spectroscopy in single quantum dots: nanoscopic raman scattering and nuclear magnetic resonance. Science 277, 85–88 (1997)

    Article  Google Scholar 

  26. 26

    Ware, M. E. et al. Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot. Phys. Rev. Lett. 95, 177403 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Scheibner, M. et al. Optically mapping the electronic structure of coupled quantum dots. Nature Phys. 4, 291–295 (2008)

    CAS  Article  Google Scholar 

  29. 29

    Alen, B. et al. Stark-shift modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 83, 2235–2237 (2003)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Koudinov, A. V., Akimov, I. A., Kusrayev, Yu. G. & Henneberger, F. Optical and magnetic anisotropies of the hole states in Stranski-Krastanov quantum dots. Phys. Rev. B 70, 241305 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. L. McEuen, L.-M. Duan, and D. Kim for discussions. This work is supported by US ARO, AFOSR, ONR, NSA/LPS, and FOCUS-NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Duncan G. Steel.

Supplementary information

Supplementary Information

This file contains Supplementary Data and Notes, Supplementary Figures 1-5 with Legends and Supplementary References. (PDF 473 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, X., Yao, W., Sun, B. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009). https://doi.org/10.1038/nature08120

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.