Direct observation of a widely tunable bandgap in bilayer graphene


The electronic bandgap is an intrinsic property of semiconductors and insulators that largely determines their transport and optical properties. As such, it has a central role in modern device physics and technology and governs the operation of semiconductor devices such as p–n junctions, transistors, photodiodes and lasers1. A tunable bandgap would be highly desirable because it would allow great flexibility in design and optimization of such devices, in particular if it could be tuned by applying a variable external electric field. However, in conventional materials, the bandgap is fixed by their crystalline structure, preventing such bandgap control. Here we demonstrate the realization of a widely tunable electronic bandgap in electrically gated bilayer graphene. Using a dual-gate bilayer graphene field-effect transistor (FET)2 and infrared microspectroscopy3,4,5, we demonstrate a gate-controlled, continuously tunable bandgap of up to 250 meV. Our technique avoids uncontrolled chemical doping6,7,8 and provides direct evidence of a widely tunable bandgap—spanning a spectral range from zero to mid-infrared—that has eluded previous attempts2,9. Combined with the remarkable electrical transport properties of such systems, this electrostatic bandgap control suggests novel nanoelectronic and nanophotonic device applications based on graphene.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dual-gated bilayer graphene.
Figure 2: Bilayer energy gap opening at strong electrical gating.
Figure 3: Bilayer energy gap opening at weak electrical gating.
Figure 4: Electric-field dependence of tunable energy bandgap in graphene bilayer.


  1. 1

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley-Interscience, 2006)

    Google Scholar 

  2. 2

    Oostinga, J. B., Heersche, H. B., Liu, X. L., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Li, Z. Q. et al. Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Phys. Rev. Lett. 102, 037403 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007)

    ADS  Article  Google Scholar 

  8. 8

    Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 770–775 (2007)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kuzmenko, A. B. et al. Infrared spectroscopy of electronic bands in bilayer graphene. Preprint at <> (2008)

  10. 10

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Huard, B. et al. Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2 pi in bilayer graphene. Nature Phys. 2, 177–180 (2006)

    ADS  Article  Google Scholar 

  16. 16

    McCann, E. & Fal'ko, V. I. Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006)

    ADS  Article  Google Scholar 

  17. 17

    McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006)

    ADS  Article  Google Scholar 

  18. 18

    Min, H. K., Sahu, B., Banerjee, S. K. & MacDonald, A. H. Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007)

    ADS  Article  Google Scholar 

  19. 19

    Lu, C. L., Chang, C. P., Huang, Y. C., Chen, R. B. & Lin, M. L. Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Phys. Rev. B 73, 144427 (2006)

    ADS  Article  Google Scholar 

  20. 20

    Guinea, F., Neto, A. H. C. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006)

    ADS  Article  Google Scholar 

  21. 21

    Abergel, D. S. L. & Fal'ko, V. I. Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007)

    ADS  Article  Google Scholar 

  22. 22

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Zhang, L. M. et al. Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Phys. Rev. B 78, 235408 (2008)

    ADS  Article  Google Scholar 

  24. 24

    Adam, S. & Sarma, S. D. Boltzmann transport and residual conductivity in bilayer graphene. Phys. Rev. B 77, 115436 (2007)

    ADS  Article  Google Scholar 

  25. 25

    Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators—band-gaps and quasi-particle energies. Phys. Rev. B 34, 5390–5413 (1986)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005)

    ADS  CAS  Article  Google Scholar 

Download references


This work was supported by the Office of Basic Energy Sciences, US Department of Energy under contract DE-AC03-76SF0098 (Materials Science Division) and contract DE-AC02-05CH11231 (Advanced Light Source). F.W., Y.Z. and T.-T.T. acknowledge support from a Sloan fellowship, a Miller fellowship and a fellowship from the National Science Council of Taiwan, respectively.

Author information



Corresponding author

Correspondence to Feng Wang.

Additional information

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure

This file contains Supplementary Figure 1S with Legend. (PDF 374 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Y., Tang, T., Girit, C. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing