Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ubiquitylation in innate and adaptive immunity

Abstract

Protein ubiquitylation has emerged as a key mechanism that regulates immune responses. Much like phosphorylation, ubiquitylation is a reversible covalent modification that regulates the stability, activity and localization of target proteins. As such, ubiquitylation regulates the development of the immune system and many phases of the immune response, including its initiation, propagation and termination. Recent work has shown that several ubiquitin ligases help to prevent the immune system from attacking self tissues. The dysfunction of several ubiquitin ligases has been linked to autoimmune diseases.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Ubiquitin-mediated activation of NF-κB in the TLR and IL-1R pathways.
Figure 2: Ubiquitin coordinates NF-κB activation and apoptosis triggered by TNFR.
Figure 3: The expanding role of Lys 63 polyubiquitylation in innate and adaptive immunity.
Figure 4: Ubiquitin ligases in the prevention of autoimmunity.

References

  1. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758–765 (2005).

    CAS  Article  Google Scholar 

  2. Chen, M. & Gerlier, D. Viral hijacking of cellular ubiquitination pathways as an anti-innate immunity strategy. Viral Immunol. 19, 349–362 (2006).

    CAS  Article  Google Scholar 

  3. Loureiro, J. & Ploegh, H. L. Antigen presentation and the ubiquitin–proteasome system in host–pathogen interactions. Adv. Immunol. 92, 225–305 (2006).

    CAS  Article  Google Scholar 

  4. Pomerantz, J. L. & Baltimore, D. Two pathways to NF-κB. Mol. Cell 10, 693–695 (2002).

    CAS  Article  Google Scholar 

  5. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin–proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).

    CAS  Article  Google Scholar 

  6. Chen, Z. J., Parent, L. & Maniatis, T. Site-specific phosphorylation of IκBα by a novel ubiquitination-dependent protein kinase activity. Cell 84, 853–862 (1996). This study uncovers the IκB kinase complex and shows that kinase activity could be activated by polyubiquitylation in vitro through a proteasome-independent mechanism.

    CAS  Article  Google Scholar 

  7. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000). This paper shows that TRAF6 is a RING-domain ubiquitin E3 ligase that functions with Ubc13/Uev1A to catalyse Lys-63-linked polyubiquitylation, leading to IKK activation.

    CAS  Article  Google Scholar 

  8. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    ADS  CAS  Article  Google Scholar 

  9. Kanayama, A. et al. TAB2 and TAB3 activate the NF-κB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535–548 (2004).

    CAS  Article  Google Scholar 

  10. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    CAS  Article  Google Scholar 

  11. Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature Cell Biol. 8, 398–406 (2006). This paper and reference 10 show that NEMO contains a ubiquitin-binding domain required for IKK activation.

    CAS  Article  Google Scholar 

  12. Krappmann, D. & Scheidereit, C. A pervasive role of ubiquitin conjugation in activation and termination of IκB kinase pathways. EMBO Rep. 6, 321–326 (2005).

    CAS  Article  Google Scholar 

  13. Sun, S. C. Deubiquitylation and regulation of the immune response. Nature Rev. Immunol. 8, 501–511 (2008).

    CAS  Article  Google Scholar 

  14. Bignell, G. R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nature Genet. 25, 160–165 (2000).

    CAS  Article  Google Scholar 

  15. Krikos, A., Laherty, C. D. & Dixit, V. M. Transcriptional activation of the tumor necrosis factor α-inducible zinc finger protein, A20, is mediated by κB elements. J. Biol. Chem. 267, 17971–17976 (1992).

    CAS  PubMed  Google Scholar 

  16. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    ADS  CAS  Article  Google Scholar 

  17. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004). This paper shows that A20 inhibits IKK through dual enzymatic activities: a DUB activity removes Lys-63-linked polyubiquitin chains from RIP1, then an E3 activity conjugates Lys-48-linked polyubiquitin chains to RIP1, targeting RIP1 for proteasomal degradation.

    ADS  CAS  Article  Google Scholar 

  18. Komander, D. & Barford, D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409, 77–85 (2008).

    CAS  Article  Google Scholar 

  19. Coornaert, B., Carpentier, I. & Beyaert, R. A20: central gatekeeper in inflammation and immunity. J. Biol. Chem. doi:10.1074/jbc.R800032200 (published online 13 November 2008).

  20. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nature Immunol. 9, 254–262 (2008).

    CAS  Article  Google Scholar 

  21. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  Article  Google Scholar 

  22. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    CAS  Article  Google Scholar 

  23. Li, H., Kobayashi, M., Blonska, M., You, Y. & Lin, X. Ubiquitination of RIP is required for tumor necrosis factor α-induced NF-κB activation. J. Biol. Chem. 281, 13636–13643 (2006).

    CAS  Article  Google Scholar 

  24. Lee, T. H., Shank, J., Cusson, N. & Kelliher, M. A. The kinase activity of Rip1 is not required for tumor necrosis factor-α-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279, 33185–33191 (2004).

    CAS  Article  Google Scholar 

  25. Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    CAS  Article  Google Scholar 

  26. Chang, L. et al. The E3 ubiquitin ligase Itch couples JNK activation to TNFα-induced cell death by inducing c-FLIPL turnover. Cell 124, 601–613 (2006).

    CAS  Article  Google Scholar 

  27. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  Article  Google Scholar 

  28. Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    CAS  Article  Google Scholar 

  29. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    CAS  Article  Google Scholar 

  30. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    CAS  Article  Google Scholar 

  31. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    CAS  Article  Google Scholar 

  32. Pichlmair, A. & Reis e Sousa, C. Innate recognition of viruses. Immunity 27, 370–383 (2007).

    CAS  Article  Google Scholar 

  33. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunol. 5, 1061–1068 (2004).

    CAS  Article  Google Scholar 

  34. Kanneganti, T. D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    CAS  Article  Google Scholar 

  35. Abbott, D. W., Wilkins, A., Asara, J. M. & Cantley, L. C. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14, 2217–2227 (2004).

    CAS  Article  Google Scholar 

  36. Windheim, M., Lang, C., Peggie, M., Plater, L. A. & Cohen, P. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem. J. 404, 179–190 (2007).

    CAS  Article  Google Scholar 

  37. Abbott, D. W. et al. Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. Mol. Cell. Biol. 27, 6012–6025 (2007).

    CAS  Article  Google Scholar 

  38. Hasegawa, M. et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J. 27, 373–383 (2008).

    CAS  Article  Google Scholar 

  39. Yang, Y. et al. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J. Biol. Chem. 282, 36223–36229 (2007).

    CAS  Article  Google Scholar 

  40. Hitotsumatsu, O. et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008).

    CAS  Article  Google Scholar 

  41. Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007). This paper shows that Lys-63-linked polyubiquitylation of RIG-I by TRIM25 has an important role in triggering type-I interferon production in response to viral infection.

    ADS  CAS  Article  Google Scholar 

  42. Friedman, C. S. et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 9, 930–936 (2008).

    CAS  Article  Google Scholar 

  43. Zhang, M. et al. Regulation of IκB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J. Biol. Chem. 283, 18621–18626 (2008).

    CAS  Article  Google Scholar 

  44. Saha, S. K. et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25, 3257–3263 (2006).

    CAS  Article  Google Scholar 

  45. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007).

    ADS  CAS  Article  Google Scholar 

  46. Sun, L., Deng, L., Ea, C. K., Xia, Z. P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    CAS  Article  Google Scholar 

  47. Oeckinghaus, A. et al. Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation. EMBO J. 26, 4634–4645 (2007).

    CAS  Article  Google Scholar 

  48. Wu, C. J. & Ashwell, J. D. NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-κB activation. Proc. Natl Acad. Sci. USA 105, 3023–3028 (2008).

    ADS  CAS  Article  Google Scholar 

  49. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004). This paper and reference 46 show that Lys-63-linked polyubiquitylation is important for IKK activation by BCL10 and MALT1 in T cells.

    ADS  CAS  Article  Google Scholar 

  50. Yamamoto, M. et al. Pivotal function of Ubc13 in thymocyte TCR signaling. J. Immunol. 177, 7520–7524 (2006).

    CAS  Article  Google Scholar 

  51. Wan, Y. Y., Chi, H., Xie, M., Schneider, M. D. & Flavell, R. A. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nature Immunol. 7, 851–858 (2006).

    CAS  Article  Google Scholar 

  52. Sato, S. et al. TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. Int. Immunol. 18, 1405–1411 (2006).

    CAS  Article  Google Scholar 

  53. Liu, H. H., Xie, M., Schneider, M. D. & Chen, Z. J. Essential role of TAK1 in thymocyte development and activation. Proc. Natl Acad. Sci. USA 103, 11677–11682 (2006).

    ADS  CAS  Article  Google Scholar 

  54. Yamamoto, M. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nature Immunol. 7, 962–970 (2006).

    CAS  Article  Google Scholar 

  55. Fukushima, T. et al. Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor (TRAF)-mediated inflammatory responses. Proc. Natl Acad. Sci. USA 104, 6371–6376 (2007).

    ADS  CAS  Article  Google Scholar 

  56. Aaltonen, J. et al. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nature Genet. 17, 399–403 (1997).

    Article  Google Scholar 

  57. Nagamine, K. et al. Positional cloning of the APECED gene. Nature Genet. 17, 393–398 (1997).

    CAS  Article  Google Scholar 

  58. Uchida, D. et al. AIRE functions as an E3 ubiquitin ligase. J. Exp. Med. 199, 167–172 (2004).

    CAS  Article  Google Scholar 

  59. Bottomley, M. J. et al. NMR structure of the first PHD finger of autoimmune regulator protein (AIRE1). Insights into autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy (APECED) disease. J. Biol. Chem. 280, 11505–11512 (2005).

    CAS  Article  Google Scholar 

  60. Akiyama, T. et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308, 248–251 (2005).

    ADS  CAS  Article  Google Scholar 

  61. Akiyama, T. et al. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29, 423–437 (2008).

    CAS  Article  Google Scholar 

  62. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    ADS  CAS  Article  Google Scholar 

  63. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    ADS  CAS  Article  Google Scholar 

  64. Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunol. 5, 255–265 (2004).

    CAS  Article  Google Scholar 

  65. Jeon, M. S. et al. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity 21, 167–177 (2004).

    CAS  Article  Google Scholar 

  66. Yang, B. et al. Nedd4 augments the adaptive immune response by promoting ubiquitin-mediated degradation of Cbl-b in activated T cells. Nature Immunol. 9, 1356–1363 (2008).

    CAS  Article  Google Scholar 

  67. Anandasabapathy, N. et al. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18, 535–547 (2003).

    CAS  Article  Google Scholar 

  68. Su, L., Lineberry, N., Huh, Y., Soares, L. & Fathman, C. G. A novel E3 ubiquitin ligase substrate screen identifies Rho guanine dissociation inhibitor as a substrate of gene related to anergy in lymphocytes. J. Immunol. 177, 7559–7566 (2006).

    CAS  Article  Google Scholar 

  69. Lineberry, N. B. et al. The transmembrane E3 ligase GRAIL ubiquitinates the costimulatory molecule CD40 ligand during the induction of T cell anergy. J. Immunol. 181, 1622–1626 (2008).

    CAS  Article  Google Scholar 

  70. Liu, Y. C. The E3 ubiquitin ligase Itch in T cell activation, differentiation, and tolerance. Semin. Immunol. 19, 197–205 (2007).

    CAS  Article  Google Scholar 

  71. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nature Immunol. 3, 281–287 (2002). This paper shows that Itch associates with and ubiquitinates JunB, a key transcription factor involved in T H 2 differentiation.

    CAS  Article  Google Scholar 

  72. Gao, M. et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306, 271–275 (2004).

    ADS  CAS  Article  Google Scholar 

  73. Venuprasad, K. et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nature Immunol. 9, 245–253 (2008).

    CAS  Article  Google Scholar 

  74. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose publications are not cited directly because of space limitations. We thank J. Cabrera for graphic support. Research in our laboratory is supported by the Howard Hughes Medical Institute and by grants from the US National Institutes of Health and the Welch Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to Z.J.C. (zhijian.chen@utsouthwestern.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhoj, V., Chen, Z. Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437 (2009). https://doi.org/10.1038/nature07959

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07959

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing