Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A regulated auxin minimum is required for seed dispersal in Arabidopsis

Abstract

Local hormone maxima are essential for the development of multicellular structures and organs. For example, steroid hormones accumulate in specific cell types of the animal fetus to induce sexual differentiation1 and concentration peaks of the plant hormone auxin direct organ initiation and mediate tissue patterning2,3,4. Here we provide an example of a regulated local hormone minimum required during organogenesis. Our results demonstrate that formation of a local auxin minimum is necessary for specification of the valve margin separation layer where Arabidopsis fruit opening takes place. Consequently, ectopic production of auxin, specifically in valve margin cells, leads to a complete loss of proper cell fate determination. The valve margin identity factor INDEHISCENT (IND) is responsible for forming the auxin minimum by coordinating auxin efflux in separation-layer cells. We propose that the simplicity of formation and maintenance make local hormone minima particularly well suited to specify a small number of cells such as the stripes at the valve margins.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An auxin minimum forms at the valve margin of Arabidopsis fruit.
Figure 2: IND regulates auxin transport.
Figure 3: IND mediates PIN delocalization.
Figure 4: IND directly regulates PID and WAG2 expression.

References

  1. Wu, Z., Wan, S. & Lee, M. M. Key factors in the regulation of fetal and postnatal leydig cell development. J. Cell. Physiol. 213, 429–433 (2007)

    CAS  Article  Google Scholar 

  2. Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999)

    CAS  Article  Google Scholar 

  3. Friml, J. et al. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis . Nature 426, 147–153 (2003)

    ADS  CAS  Article  Google Scholar 

  4. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003)

    Article  Google Scholar 

  5. Konishi, S. et al. An SNP caused loss of shattering during rice domestication. Science 312, 1392–1396 (2006)

    ADS  CAS  Article  Google Scholar 

  6. Østergaard, L., Kempin, S. A., Bies, D., Klee, H. J. & Yanofsky, M. F. Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol. J. 4, 45–51 (2006)

    Article  Google Scholar 

  7. Roeder, A. H. K. & Yanofsky, M. F. in The Arabidopsis Book (eds Somerville, C. R. & Meyerowitz, E. M.) doi:10.1199/tab.0075 (Am. Soc. Plant Biol., 2006)

    Google Scholar 

  8. Petersen, M. et al. Isolation and characterisation of a pod dehiscence zone-specific polygalacturonase from Brassica napus . Plant Mol. Biol. 31, 517–527 (1996)

    CAS  Article  Google Scholar 

  9. Nemhauser, J., Feldmann, L. J. & Zambryski, P. C. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127, 3877–3888 (2000)

    CAS  PubMed  Google Scholar 

  10. Østergaard, L. Don’t ‘leaf’ now. The making of a fruit. Curr. Opin. Plant Biol. 12, 36–41 (2009)

    Article  Google Scholar 

  11. Chauvaux, N. et al. The role of auxin in cell separation in the dehiscence zone of rapeseed pods. J. Exp. Biol. 48, 1423–1429 (1997)

    CAS  Google Scholar 

  12. Sohlberg, J. J. et al. STY1 regulates auxin homeostasis and affects apical–basal patterning of the Arabidopsis gynoecium. Plant J. 47, 112–123 (2006)

    CAS  Article  Google Scholar 

  13. Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis . Plant Cell 2, 755–767 (1990)

    CAS  Article  Google Scholar 

  14. Liljegren, S. J. et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116, 843–853 (2004)

    CAS  Article  Google Scholar 

  15. Ferrándiz, C., Liljegren, S. J. & Yanofsky, M. F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289, 436–438 (2000)

    ADS  Article  Google Scholar 

  16. Roeder, A. H., Ferrándiz, C. & Yanofsky, M. F. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr. Biol. 13, 1630–1635 (2003)

    CAS  Article  Google Scholar 

  17. Romano, C. P., Robson, P. R., Smith, H., Estelle, M. & Klee, H. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6–1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol. Biol. 27, 1071–1083 (1995)

    CAS  Article  Google Scholar 

  18. Aoyama, T. & Chua, N.-H. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605–612 (1997)

    CAS  Article  Google Scholar 

  19. Gremski, K., Ditta, G. & Yanofsky, M. F. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana . Development 134, 3593–3601 (2007)

    CAS  Article  Google Scholar 

  20. Okada, K., Ueda, J., Komaki, M. K., Bell, C. J. & Shimura, Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3, 677–684 (1991)

    CAS  Article  Google Scholar 

  21. Bennett, S. M. R., Alvarez, J., Bossinger, G. & Smyth, D. R. Morphogenesis in pinoid mutants of Arabidopsis thaliana . Plant J. 8, 505–520 (1995)

    CAS  Article  Google Scholar 

  22. Petrásek, J. et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914–918 (2006)

    ADS  Article  Google Scholar 

  23. Wisniewska, J. et al. PIN localization directs auxin flow in plants. Science 312, 883 (2006)

    CAS  Article  Google Scholar 

  24. Tanaka, H., Dhonukshe, P., Brewer, P. B. & Friml, J. Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell. Mol. Life Sci. 63, 2738–2754 (2006)

    CAS  Article  Google Scholar 

  25. Benjamins, R., Quint, A., Weijers, D., Hooykaas, P. & Offringa, R. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128, 4057–4067 (2001)

    CAS  PubMed  Google Scholar 

  26. Friml, J. et al. A PINOID-dependent binary switch in apical–basal PIN polar targeting directs auin efflux. Science 306, 862–865 (2004)

    ADS  CAS  Article  Google Scholar 

  27. Friml, J., Wisniewska, J., Benková, E., Mendgen, K. & Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis . Nature 415, 806–809 (2002)

    ADS  Article  Google Scholar 

  28. Michniewicz, M. et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flow. Cell 130, 1044–1056 (2007)

    CAS  Article  Google Scholar 

  29. Santner, A. A. & Watson, J. C. The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis . Plant J. 45, 752–764 (2006)

    CAS  Article  Google Scholar 

  30. Galván-Ampudia, C. S. & Offringa, R. Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci. 12, 541–547 (2007)

    Article  Google Scholar 

  31. Yu, H., Ito, T., Wellmer, F. & Meyerowitz, E. M. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nature Genet. 36, 157–161 (2004)

    CAS  Article  Google Scholar 

  32. Cutler, S. R., Ehrhardt, D. W., Griffitts, J. S. & Somerville, C. R. Random GFP:cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl Acad. Sci. USA 97, 3718–3723 (2000)

    ADS  CAS  Article  Google Scholar 

  33. Romano, C. P., Hein, M. B. & Klee, H. J. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi . Genes Dev. 5, 438–446 (1991)

    CAS  Article  Google Scholar 

  34. Edlund, A., Eklöf, S., Sundberg, B., Moritz, T. & Sandberg, G. A microscale technoque for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol. 108, 1043–1047 (1995)

    CAS  Article  Google Scholar 

  35. Rozen, S. & Skaletsky, H. J. in Bioinformatics Methods and Protocols: Methods in Molecular Biology (eds Krawetz, S. & Misener, S.) 365–386 (Humana, 2000)

    Google Scholar 

  36. Han, S. & Kim, D. AtRTPrimer: database for Arabidopsis genome-wide homogeneous and specific RT-PCR primer-pairs. BMC Bioinformatics 7, 179 (2006)

    Article  Google Scholar 

  37. Morohashi, K. et al. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol. 145, 736–746 (2007)

    CAS  Article  Google Scholar 

  38. Ito, T., Ng, K. H., Lim, T. S., Yu, H. & Meyerowitz, E. M. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis . Plant Cell 19, 3516–3529 (2007)

    CAS  Article  Google Scholar 

  39. Blázquez, M. A., Soowal, L. N., Lee, I. & Weigel, D. LEAFY expression and flower initiation in Arabidopsis . Development 124, 3835–3844 (1997)

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. York and K. Findlay for assistance on SEM analysis, G. Calder for assistance with confocal microscopy, P. Pople for graphics assistance, and H. F. Klee for the pMON518 plasmid containing the iaaM gene. We also wish to thank G. S. Ditta, L. Dolan, S. Fuentes, J. Kleine-Vehn, R. Sablowski, P. Stephenson and T. Wood for carefully reading the manuscript and constructive criticism. P.R was the recipient of a postdoctoral fellowship from the Spanish government. This work was supported by grants from FWO (Odysseus program) to J.F., from The Netherlands Organisation for Scientific Research (ALW-NWO) to R.O., from the National Science Foundation to M.F.Y., and from the Biotechnological and Biological Sciences Research Council as well as core strategic funds from the John Innes Centre to L.Ø.

Author Contributions This project was conceived by K.S., M.F.Y. and L.Ø. Experiments were designed by K.S. and L.Ø. K.S. performed the confocal microscopy and expression analyses, T.G. carried out the chromatin immunoprecipitations, L.Ø. made the IND::IND:iaaM lines and performed plant sections and tissue staining, K.L. performed the IAA measurements, P.R. made the 35S::IND:GR transgenic line, S.J.L. characterized the 35S::IND lines and took the 35S::IND SEM image shown, and C.S.G.-A., J.F. and R.O. analysed the effect of WAG2 activity on PIN localization. K.S. and L.Ø. analysed the data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Østergaard.

Supplementary information

Supplementary Information

This file contains Supplementary Data, a Supplementary Reference, Supplementary Figures 1-7 with Legends and Supplementary Notes. (PDF 7297 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sorefan, K., Girin, T., Liljegren, S. et al. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459, 583–586 (2009). https://doi.org/10.1038/nature07875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07875

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing