Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets

Abstract

Rivers are the dominant source of many elements and isotopes to the ocean. But this input from the continents is not balanced by the loss of the elements and isotopes through hydrothermal and sedimentary exchange with the oceanic crust, or by temporal changes in the marine inventory for elements that are demonstrably not in steady state1,2,3,4. To resolve the problem of the observed imbalance in marine geochemical budgets, attention has been focused on uncertainties in the hydrothermal and sedimentary fluxes1,2,3,4. In recent Earth history, temporally dynamic chemical weathering fluxes from the continents are an inevitable consequence of periodic glaciations5,6,7,8,9. Chemical weathering rates on modern Earth are likely to remain far from equilibrium owing to the physical production of finely ground material at glacial terminations10,11,12,13 that acts as a fertile substrate for chemical weathering. Here we explore the implications of temporal changes in the riverine chemical weathering flux for oceanic geochemical budgets. We contend that the riverine flux obtained from observations of modern rivers is broadly accurate, but not representative of timescales appropriate for elements with oceanic residence longer than Quaternary glacial–interglacial cycles. We suggest that the pulse of rapid chemical weathering initiated at the last deglaciation has not yet decayed away and that weathering rates remain about two to three times the average for an entire late Quaternary glacial cycle. Taking into account the effect of the suggested non-steady-state process on the silicate weathering flux helps to reconcile the modelled marine strontium isotope budget with available data. Overall, we conclude that consideration of the temporal variability in riverine fluxes largely ameliorates long-standing problems with chemical and isotopic mass balances in the ocean.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Estimates of the hydrothermal water flux at mid-ocean ridges.
Figure 2: Dependence of chemical weathering on substrate age.
Figure 3: Chemical and physical weathering rates over the last glacial cycle.
Figure 4: Sr behaviour during weathering and the oceanic mass balance.

References

  1. Elderfield, H. & Schultz, A. Mid-ocean hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996)

    ADS  CAS  Article  Google Scholar 

  2. Galy, A., France-Lanord, C. & Derry, L. A. The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh. Geochim. Cosmochim. Acta 63, 1905–1925 (1999)

    ADS  CAS  Article  Google Scholar 

  3. Davis, A. C., Bickle, M. J. & Teagle, D. A. H. Imbalance in the oceanic strontium budget. Earth Planet. Sci. Lett. 211, 173–187 (2003)

    ADS  CAS  Article  Google Scholar 

  4. Holland, H. D. Sea level, sediments and the composition of seawater. Am. J. Sci. 305, 220–239 (2005)

    ADS  CAS  Article  Google Scholar 

  5. Taylor, A. & Blum, J. D. Relation between soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence. Geology 23, 979–982 (1995)

    ADS  CAS  Article  Google Scholar 

  6. Blum, J. D. & Erel, Y. Rb-Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193–3204 (1997)

    ADS  CAS  Article  Google Scholar 

  7. Harlavan, Y., Erel, Y. & Blum, Y. D. Systematic changes in lead isotopic composition with soil age in glacial granitic terrains. Geochim. Cosmochim. Acta 62, 33–46 (1998)

    ADS  CAS  Article  Google Scholar 

  8. Foster, G. L. & Vance, D. Negligible glacial-interglacial variation in continental chemical weathering rates. Nature 444, 918–921 (2006)

    ADS  CAS  Article  Google Scholar 

  9. Dosseto, A., Bourdon, B. & Turner, S. P. Uranium-series isotopes in river materials: Insights into the timescales of erosion and sediment transport. Earth Planet. Sci. Lett. 265, 1–17 (2008)

    ADS  CAS  Article  Google Scholar 

  10. Bell, M. & Laine, E. P. Erosion of the Laurentide region of North America by glacial and glaciofluvial processes. Quat. Res. 23, 154–174 (1985)

    Article  Google Scholar 

  11. Thomas, M. F. & Thorp, M. B. Geomorphic response to rapid climatic and hydrologic change during the late Pleistocene and early Holocene in the humid and sub-humid tropics. Quat. Sci. Rev. 14, 193–197 (1995)

    ADS  Article  Google Scholar 

  12. Goodbred, S. L. & Kuehl, S. A. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 28, 1083–1086 (2000)

    ADS  Article  Google Scholar 

  13. Hinderer, M. Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinam. Acta 14, 231–263 (2001)

    ADS  Google Scholar 

  14. Hodell, D. A., Mueller, P. A., McKenzie, J. A. & Mead, G. A. Strontium isotope stratigraphy and geochemistry of the late Neogene ocean. Earth Planet. Sci. Lett. 92, 165–178 (1989)

    ADS  CAS  Article  Google Scholar 

  15. Oxburgh, R., Pierson-Wickmann, A.-C., Reisberg, L. & Hemming, S. Climate-correlated variations in seawater 187Os/188Os over the past 200,000 yr: Evidence from the Cariaco Basin, Venezuela. Earth Planet. Sci. Lett. 263, 246–258 (2007)

    ADS  CAS  Article  Google Scholar 

  16. Palmer, M. R. & Edmond, J. M. The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett. 92, 11–26 (1989)

    ADS  CAS  Article  Google Scholar 

  17. Tipper, E. T. et al. The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios. Earth Planet. Sci. Lett. 250, 241–253 (2006)

    ADS  CAS  Article  Google Scholar 

  18. Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999)

    ADS  CAS  Article  Google Scholar 

  19. Clark, P. U. et al. The middle Pleistocene transition: Characteristics, mechanisms and implications for long-term changes in atmospheric CO2 . Quat. Sci. Rev. 25, 3150–3184 (2006)

    ADS  Article  Google Scholar 

  20. Anderson, S. P. Biogeochemistry of glacial landscape systems. Annu. Rev. Earth Planet. Sci. 35, 375–399 (2007)

    ADS  CAS  Article  Google Scholar 

  21. White, A. F. & Brantley, S. L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and the field? Chem. Geol. 202, 479–506 (2003)

    ADS  CAS  Article  Google Scholar 

  22. Porder, S., Hilley, G. E. & Chadwick, O. A. Chemical weathering, mass loss, and dust inputs across a climate by time matrix in the Hawaiian Islands. Earth Planet. Sci. Lett. 258, 414–427 (2007)

    ADS  CAS  Article  Google Scholar 

  23. Millot, R., Gaillardet, J., Dupré, B. & Allègre, C. J. The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 196, 83–98 (2002)

    ADS  CAS  Article  Google Scholar 

  24. West, A. J., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005)

    ADS  CAS  Article  Google Scholar 

  25. Henderson, G. M., Martel, D. J., O'Nions, R. K. & Shackleton, N. J. Evolution of seawater 87Sr/86Sr over the last 400 ka: The absence of glacial/interglacial cycles. Earth Planet. Sci. Lett. 128, 643–651 (1994)

    ADS  CAS  Article  Google Scholar 

  26. Peucker-Ehrenbrink, B. & Blum, J. D. Re-Os isotope systematics and weathering of Precambrian crustal rocks: Implications for the marine osmium isotope record. Geochim. Cosmochim. Acta 62, 3193–3203 (1998)

    ADS  CAS  Article  Google Scholar 

  27. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    ADS  CAS  Article  Google Scholar 

  28. Teagle, D. A. H., Bickle, M. J. & Alt, J. C. Recharge flux to ocean-ridge black smoker systems: A geochemical estimate from ODP Hole 504B. Earth Planet. Sci. Lett. 210, 81–89 (2003)

    ADS  CAS  Article  Google Scholar 

  29. Nielsen, S. G. et al. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet. Sci. Lett. 251, 120–133 (2006)

    ADS  CAS  Article  Google Scholar 

  30. Stoll, H. M. & Schrag, D. P. Effect of Quaternary sea-level cycles on Sr in seawater. Geochim. Cosmochim. Acta 62, 1107–1118 (1998)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank H. Pälike, M. Palmer, C. Hawkesworth, T. Elliott, D. Schmidt, M. Gutjahr and M. Andersen for reading and improving an earlier version of this paper, and J. Phillips for help with a statistics problem. This work was done while D.V. held a Blaustein Visiting Research Professorship at Stanford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Vance.

Supplementary information

Supplementary Information

This file contains Supplementary Tables S1-S3 Supplementary Notes, Supplementary Figures S1 and Supplementary References (PDF 291 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vance, D., Teagle, D. & Foster, G. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature 458, 493–496 (2009). https://doi.org/10.1038/nature07828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07828

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing