Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism

A Corrigendum to this article was published on 07 May 2009


The thermal evolution of planetary crust and lithosphere is largely governed by the rate of heat transfer by conduction1,2,3. The governing physical properties are thermal diffusivity (κ) and conductivity (k = κρCP), where ρ denotes density and CP denotes specific heat capacity at constant pressure. Although for crustal rocks both κ and k decrease above ambient temperature4,5, most thermal models of the Earth’s lithosphere assume constant values for κ (1 mm2 s-1) and/or k (3 to 5 W m-1 K-1)6,7 owing to the large experimental uncertainties associated with conventional contact methods at high temperatures. Recent advances in laser-flash analysis8,9 permit accurate (±2 per cent) measurements on minerals and rocks to geologically relevant temperatures10. Here we provide data from laser-flash analysis for three different crustal rock types, showing that κ strongly decreases from 1.5–2.5 mm2 s-1 at ambient conditions, approaching 0.5 mm2 s-1 at mid-crustal temperatures. The latter value is approximately half that commonly assumed, and hot middle to lower crust is therefore a much more effective thermal insulator than previously thought. Above the quartz α–β phase transition, crustal κ is nearly independent of temperature, and similar to that of mantle materials11. Calculated values of k indicate that its negative dependence on temperature is smaller than that of κ, owing to the increase of CP with increasing temperature, but k also diminishes by 50 per cent from the surface to the quartz α–β transition. We present models of lithospheric thermal evolution during continental collision and demonstrate that the temperature dependence of κ and CP leads to positive feedback between strain heating in shear zones and more efficient thermal insulation, removing the requirement for unusually high radiogenic heat production to achieve crustal melting temperatures. Positive feedback between heating, increased thermal insulation and partial melting is predicted to occur in many tectonic settings, and in both the crust and the mantle, facilitating crustal reworking and planetary differentiation12.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermal diffusivity of crustal rocks as a function of temperature.
Figure 2: Thermal conductivity as a function of temperature.
Figure 3: Thermal models for doubly thickened continental crust with a shear zone at a depth of 35 km.


  1. Thompson, W. The age of the Earth as an abode fitted for life. Science 9, 665–674 (1899)

    Article  Google Scholar 

  2. Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn, Ch. 4, 132–194 (Cambridge Univ. Press, 2001)

    Google Scholar 

  3. Petitjean, S., Rabinowicz, M., Grégoire, M. & Chevrot, S. Differences between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity. Geochem. Geophys. Geosyst. 7 10.1029/2005GC001053 (2006)

  4. Vosteen, H.-D. & Schellschmidt, R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys. Chem. Earth 28, 499–509 (2003)

    Article  Google Scholar 

  5. Mottaghy, D., Vosteen, H.-D. & Schellschmidt, R. Temperature dependence of the relationship of thermal diffusivity versus thermal conductivity for crystalline rocks. Int. J. Earth Sci. 97, 435–442 (2008)

    Article  CAS  Google Scholar 

  6. Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992)

    Article  ADS  Google Scholar 

  7. Michaut, C., Jaupart, C. & Bell, D. R. Transient geotherms in Archean continental lithosphere: New constraints on thickness and heat production of the subcontinental lithospheric mantle. J. Geophys. Res. 112 10.1029/2006JB004464 (2007)

  8. Degiovanni, A., Andre, S. & Maillet, D. in Thermal Conductivity 22 (ed. Tong, T. W.) 623–633 (Technomic, 1994)

    Google Scholar 

  9. Hofmann, R., Hahn, O., Raether, F., Mehling, H. & Fricke, J. Determination of thermal diffusivity in diathermic materials by the laser-flash technique. High Temp. High Press. 29, 703–710 (1997)

    Article  CAS  Google Scholar 

  10. Hofmeister, A. M. Thermal diffusivity of garnets to high temperature. Phys. Chem. Miner. 33, 45–62 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Hofmeister, A. M. & Pertermann, M. Thermal diffusivity of clinopyroxenes at elevated temperature. Eur. J. Mineral. 20, 537–549 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Schumacher, S. & Breuer, D. Influence of a variable thermal conductivity on the thermochemical evolution of Mars. J. Geophys. Res. 111 10.1029/2005JE002429 (2006)

  13. Hofmeister, A. M., Pertermann, M. & Branlund, J. M. in Mineral Physics (ed. Price, G. D.) 543–578 (Elsevier, 2007)

    Google Scholar 

  14. Branlund, J. M. & Hofmeister, A. M. Factors affecting heat transfer in natural SiO2 solids. Am. Mineral. 93, 1620–1629 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Pertermann, M. & Hofmeister, A. M. Thermal diffusivity of olivine-group minerals. Am. Mineral. 91, 1747–1760 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Robie, R. A. & Hemingway, B. S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. Bull. US Geol. Surv. 2131, 1–461 (1995)

    Google Scholar 

  17. Chapman, D. S. & Furlong, K. P. in Continental Lower Crust (eds Fountain, D. M., Arculus, R. & Kay, R. W.) 179–199 (Elsevier, 1992)

    Google Scholar 

  18. Nabelek, P. I. & Liu, M. Petrologic and thermal constraints on the origin of leucogranites in collisional orogens. Trans. R. Soc. Edinb. Earth Sci. 95, 73–85 (2004)

    Article  CAS  Google Scholar 

  19. Whittington, A. G. & Treloar, P. J. Crustal anatexis and its relation to the exhumation of collisional orogenic belts, with particular reference to the Himalaya. Mineral. Mag. 66, 53–91 (2002)

    Article  CAS  Google Scholar 

  20. Jamieson, R. A., Beaumont, C., Fullsack, P. & Lee, B. Barrovian regional metamorphism: where’s the heat? Spec. Publ. Geol. Soc. (Lond.) 138, 23–51 (1998)

    Article  ADS  Google Scholar 

  21. Huerta, A. D., Royden, L. H. & Hodges, K. V. The effects of accretion, erosion and radiogenic heating on the metamorphic evolution of collisional orogens. J. Metamorph. Geol. 17, 349–366 (1999)

    Article  ADS  CAS  Google Scholar 

  22. England, P. & Molnar, P. Cause and effect among thrust and normal faulting, anatectic melting and exhumation in the Himalaya. Spec. Publ. Geol. Soc. (Lond.) 74, 401–411 (1993)

    Article  Google Scholar 

  23. Harrison, T. M., Grove, M., Lovera, O. M. & Catlos, E. J. A model for the origin of Himalayan anatexis and inverted metamorphism. J. Geophys. Res. 103, 27017–27032 (1998)

    Article  ADS  Google Scholar 

  24. Nabelek, P. I. & Liu, M. Leucogranites in the Black Hills of South Dakota: The consequence of shear heating during continental collision. Geology 27, 523–526 (1999)

    Article  ADS  Google Scholar 

  25. Liu, M. & Furlong, K. P. Crustal thickening and Eocene extension in the southeastern Canadian cordillera: Some thermal and mechanical considerations. Tectonics 12, 776–786 (1993)

    Article  ADS  Google Scholar 

  26. Patiño-Douce, A. E. & Harris, N. Experimental constraints on Himalayan anatexis. J. Petrol. 39, 689–710 (1998)

    Article  ADS  Google Scholar 

  27. Hartz, E. H. & Podladchikov, Y. Y. Toasting the jelly sandwich: The effect of shear heating on lithospheric geotherms and strength. Geology 36, 331–334 (2008)

    Article  ADS  Google Scholar 

  28. Pertermann, M., Whittington, A. G., Hofmeister, A. M., Spera, F. J. & Zayak, J. Transport properties of low-sanidine single-crystals, glasses and melts at high temperature. Contrib. Mineral. Petrol. 155, 689–702 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Hofmeister, A. M., Pertermann, M., Branlund, J. M. & Whittington, A. G. Geophysical implications of reduction in thermal conductivity due to hydration. Geophys. Res. Lett. 33 10.1029/2006GL026036 (2006)

  30. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006)

    Article  CAS  Google Scholar 

Download references


We thank M. Liu for providing the original version of the program OROGEN. This work was supported by the US National Science Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alan G. Whittington.

Supplementary information

Supplementary Table

This file contains a Supplementary Data Table (XLS 24 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Whittington, A., Hofmeister, A. & Nabelek, P. Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature 458, 319–321 (2009).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing