Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A mechanosensitive transcriptional mechanism that controls angiogenesis


Angiogenesis is controlled by physical interactions between cells and extracellular matrix as well as soluble angiogenic factors, such as VEGF. However, the mechanism by which mechanical signals integrate with other microenvironmental cues to regulate neovascularization remains unknown. Here we show that the Rho inhibitor, p190RhoGAP (also known as GRLF1), controls capillary network formation in vitro in human microvascular endothelial cells and retinal angiogenesis in vivo by modulating the balance of activities between two antagonistic transcription factors, TFII-I (also known as GTF2I) and GATA2, that govern gene expression of the VEGF receptor VEGFR2 (also known as KDR). Moreover, this new angiogenesis signalling pathway is sensitive to extracellular matrix elasticity as well as soluble VEGF. This is, to our knowledge, the first known functional cross-antagonism between transcription factors that controls tissue morphogenesis, and that responds to both mechanical and chemical cues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: TFII-I and GATA2 control VEGFR2 expression via p190RhoGAP.
Figure 2: Matrix elasticity controls VEGFR2 expression via TFII-I and GATA2.
Figure 3: Antagonism between GATA2 and TFII-I controls capillary cell migration and tube formation in vitro.
Figure 4: Matrix elasticity controls vessel formation via TFII-I and GATA2 in vivo.
Figure 5: TFII-I, GATA2 and p190RhoGAP regulate retinal vessel formation in vivo.


  1. 1

    Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nature Med. 9, 669–676 (2003)

    CAS  Article  Google Scholar 

  2. 2

    Ferrara, N., Mass, R. D., Campa, C. & Kim, R. Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu. Rev. Med. 58, 491–504 (2007)

    CAS  Article  Google Scholar 

  3. 3

    Ingber, D. E. & Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109, 317–330 (1989)

    CAS  Article  Google Scholar 

  4. 4

    Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997)

    CAS  Article  Google Scholar 

  5. 5

    Dike, L. E. et al. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. Biol. Anim. 35, 441–448 (1999)

    CAS  Article  Google Scholar 

  6. 6

    Parker, K. K. et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 16, 1195–1204 (2002)

    CAS  Article  Google Scholar 

  7. 7

    Matthews, B. D., Overby, D. R., Mannix, R. & Ingber, D. E. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119, 508–518 (2006)

    CAS  Article  Google Scholar 

  8. 8

    Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006)

    CAS  Article  Google Scholar 

  9. 9

    Moore, K. A. et al. Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev. Dyn. 232, 268–281 (2005)

    CAS  Article  Google Scholar 

  10. 10

    Huang, S. & Ingber, D. E. The structural and mechanical complexity of cell-growth control. Nature Cell Biol. 1, E131–E138 (1999)

    CAS  Article  Google Scholar 

  11. 11

    Folkman, J. & Moscona, A. Role of cell shape in growth control. Nature 273, 345–349 (1978)

    CAS  Article  Google Scholar 

  12. 12

    Folkman, J. & Kalluri, R. Cancer without disease. Nature 427, 787 (2004)

    CAS  Article  Google Scholar 

  13. 13

    Matsumoto, T. & Claesson-Welsh, L. VEGF receptor signal transduction. Sci. STKE 2001, re21 (2001)

    CAS  Google Scholar 

  14. 14

    Wong, C. G., Rich, K. A., Liaw, L. H., Hsu, H. T. & Berns, M. W. Intravitreal VEGF and bFGF produce florid retinal neovascularization and hemorrhage in the rabbit. Curr. Eye Res. 22, 140–147 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Mammoto, A., Huang, S., Moore, K., Oh, P. & Ingber, D. E. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J. Biol. Chem. 279, 26323–26330 (2004)

    CAS  Article  Google Scholar 

  16. 16

    Mammoto, A., Huang, S. & Ingber, D. E. Filamin links cell shape and cytoskeletal structure to Rho regulation by controlling accumulation of p190RhoGAP in lipid rafts. J. Cell Sci. 120, 456–467 (2007)

    CAS  Article  Google Scholar 

  17. 17

    Jiang, W. et al. An FF domain-dependent protein interaction mediates a signaling pathway for growth factor-induced gene expression. Mol. Cell 17, 23–35 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Jackson, T. A., Taylor, H. E., Sharma, D., Desiderio, S. & Danoff, S. K. Vascular endothelial growth factor receptor-2: counter-regulation by the transcription factors, TFII-I and TFII-IRD1. J. Biol. Chem. 280, 29856–29863 (2005)

    CAS  Article  Google Scholar 

  19. 19

    Roy, A. L. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I. Gene 274, 1–13 (2001)

    CAS  Article  Google Scholar 

  20. 20

    Francke, U. Williams–Beuren syndrome: genes and mechanisms. Hum. Mol. Genet. 8, 1947–1954 (1999)

    CAS  Article  Google Scholar 

  21. 21

    Roy, A. L. Signal-induced functions of the transcription factor TFII-I. Biochim. Biophys. Acta 1769, 613–621 (2007)

    CAS  Article  Google Scholar 

  22. 22

    Patterson, C. et al. Cloning and functional analysis of the promoter for KDR/flk-1, a receptor for vascular endothelial growth factor. J. Biol. Chem. 270, 23111–23118 (1995)

    CAS  Article  Google Scholar 

  23. 23

    Minami, T., Rosenberg, R. D. & Aird, W. C. Transforming growth factor-β1-mediated inhibition of the flk-1/KDR gene is mediated by a 5′-untranslated region palindromic GATA site. J. Biol. Chem. 276, 5395–5402 (2001)

    CAS  Article  Google Scholar 

  24. 24

    Minami, T. et al. Interaction between hex and GATA transcription factors in vascular endothelial cells inhibits flk-1/KDR-mediated vascular endothelial growth factor signaling. J. Biol. Chem. 279, 20626–20635 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Cantor, A. B. & Orkin, S. H. Hematopoietic development: a balancing act. Curr. Opin. Genet. Dev. 11, 513–519 (2001)

    CAS  Article  Google Scholar 

  26. 26

    Grogan, J. L. & Locksley, R. M. T helper cell differentiation: on again, off again. Curr. Opin. Immunol. 14, 366–372 (2002)

    CAS  Article  Google Scholar 

  27. 27

    Pai, S. Y., Truitt, M. L. & Ho, I. C. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl Acad. Sci. USA 101, 1993–1998 (2004)

    CAS  Article  Google Scholar 

  28. 28

    Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D. & Werb, Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041–1055 (2006)

    CAS  Article  Google Scholar 

  29. 29

    Su, Z. J. et al. A vascular cell-restricted RhoGAP, p73RhoGAP, is a key regulator of angiogenesis. Proc. Natl Acad. Sci. USA 101, 12212–12217 (2004)

    CAS  Article  Google Scholar 

  30. 30

    Arthur, W. T., Petch, L. A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719–722 (2000)

    CAS  Article  Google Scholar 

  31. 31

    Robinson, C. J. & Stringer, S. E. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J. Cell Sci. 114, 853–865 (2001)

    CAS  Google Scholar 

  32. 32

    Sheibani, N. & Frazier, W. A. Down-regulation of platelet endothelial cell adhesion molecule-1 results in thrombospondin-1 expression and concerted regulation of endothelial cell phenotype. Mol. Biol. Cell 9, 701–713 (1998)

    CAS  Article  Google Scholar 

  33. 33

    Numaguchi, Y. et al. Caldesmon-dependent switching between capillary endothelial cell growth and apoptosis through modulation of cell shape and contractility. Angiogenesis 6, 55–64 (2003)

    CAS  Article  Google Scholar 

  34. 34

    Polte, T. R., Eichler, G. S., Wang, N. & Ingber, D. E. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am. J. Physiol. Cell Physiol. 286, C518–C528 (2004)

    CAS  Article  Google Scholar 

  35. 35

    Pierce, E. A., Avery, R. L., Foley, E. D., Aiello, L. P. & Smith, L. E. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl Acad. Sci. USA 92, 905–909 (1995)

    CAS  Article  Google Scholar 

  36. 36

    Stalmans, I. et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest. 109, 327–336 (2002)

    CAS  Article  Google Scholar 

  37. 37

    Mammoto, T. et al. Angiopoietin-1 requires p190RhoGAP to protect against vascular leakage in vivo . J. Biol. Chem. 282, 23910–23918 (2007)

    CAS  Article  Google Scholar 

  38. 38

    Singh, H., Medina, K. L. & Pongubala, J. M. Contingent gene regulatory networks and B cell fate specification. Proc. Natl Acad. Sci. USA 102, 4949–4953 (2005)

    CAS  Article  Google Scholar 

  39. 39

    Swiers, G., Patient, R. & Loose, M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev. Biol. 294, 525–540 (2006)

    CAS  Article  Google Scholar 

  40. 40

    Gottgens, B. et al. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J. 21, 3039–3050 (2002)

    CAS  Article  Google Scholar 

  41. 41

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    CAS  Article  Google Scholar 

  42. 42

    Clark, E. R. & Clark, E. L. Microscopic observations on the growth of blood capillaries in the living mammal. Am. J. Anat. 64, 251–301 (1939)

    Article  Google Scholar 

  43. 43

    Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005)

    CAS  Article  Google Scholar 

  44. 44

    Pelham, R. J. & Wang, Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997)

    CAS  Article  Google Scholar 

  45. 45

    Wang, N. et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–C616 (2002)

    CAS  Article  Google Scholar 

  46. 46

    Yung, C. W. et al. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J. Biomed. Mater. Res. A 83, 1039–1046 (2007)

    CAS  Article  Google Scholar 

  47. 47

    Connor, K. M. et al. Increased dietary intake of Ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Med. 13, 868–873 (2007)

    CAS  Article  Google Scholar 

Download references


We thank T. Polte, E. Pravda, M. de Bruijn and K. Johnson for their technical suggestions and assistance, T. Nakano and H. Sabe for providing plasmids, the National Institutes of Health (NIH) for providing VEGF, and D. Weitz for providing assistance with rheometry measurements. This work was supported by funds from the NIH (to D.E.I., L.E.H.S. and K.M.C.), V. Kann Rasmussen Foundation (to L.E.H.S.), Children’s Hospital Mental Retardation and Developmental Disabilities Research Center (to L.E.H.S.), a Research to Prevent Blindness Lew Wasserman Merit Award (to L.E.H.S.), American Heart Association (to A.M.), and a Children’s Hospital House Officer Development Award (to A.M.); D.E.I. is a recipient of a DoD Breast Cancer Innovator Award.

Author Contributions A.M. conceived the experiments, performed experiments, designed research and analysed data with assistance from K.M.C., T.M., C.W.Y., D.H., C.M.A., G.M., L.E.H.S. and D.E.I. A.M. wrote the manuscript with D.E.I., with input from L.E.H.S.

Author information



Corresponding author

Correspondence to Donald E. Ingber.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S13 with Legends and Supplementary Tables S1 and S2 (PDF 6181 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mammoto, A., Connor, K., Mammoto, T. et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457, 1103–1108 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing