Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A high-mobility electron-transporting polymer for printed transistors


Printed electronics is a revolutionary technology aimed at unconventional electronic device manufacture on plastic foils, and will probably rely on polymeric semiconductors for organic thin-film transistor (OTFT) fabrication. In addition to having excellent charge-transport characteristics in ambient conditions, such materials must meet other key requirements, such as chemical stability, large solubility in common solvents, and inexpensive solution and/or low-temperature processing. Furthermore, compatibility of both p-channel (hole-transporting) and n-channel (electron-transporting) semiconductors with a single combination of gate dielectric and contact materials is highly desirable to enable powerful complementary circuit technologies, where p- and n-channel OTFTs operate in concert. Polymeric complementary circuits operating in ambient conditions are currently difficult to realize: although excellent p-channel polymers are widely available, the achievement of high-performance n-channel polymers is more challenging. Here we report a highly soluble (60 g l-1) and printable n-channel polymer exhibiting unprecedented OTFT characteristics (electron mobilities up to 0.45–0.85 cm2 V-1 s-1) under ambient conditions in combination with Au contacts and various polymeric dielectrics. Several top-gate OTFTs on plastic substrates were fabricated with the semiconductor-dielectric layers deposited by spin-coating as well as by gravure, flexographic and inkjet printing, demonstrating great processing versatility. Finally, all-printed polymeric complementary inverters (with gain 25–65) have been demonstrated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Organic thin-film transistor structure, fabrication and operational principles.
Figure 2: Performance in ambient conditions of representative TGBC TFT devices with spin-coated P(NDI2OD-T2) semiconductor and various dielectric layers.
Figure 3: Stability and bias stress in ambient of representative TGBC TFTs with spin-coated P(NDI2OD-T2) semiconductor and several gate dielectrics.
Figure 4: P(NDI2OD-T2) film morphologies and TGBC TFT performance for polymer films/devices fabricated using various solution-processing techniques on PET/Au substrates.
Figure 5: P3HT (p-channel)-P(NDI2OD-T2) (n-channel) complementary inverters.


  1. 1

    Malliaras, G. & Friend, R. H. An organic electronics primer. Phys. Today 58, 53–58 (2005)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Klauk, H. Organic Electronics: Materials, Manufacturing and Applications (Wiley-VCH, 2006)

    Book  Google Scholar 

  3. 3

    Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Briseno, A. L. et al. Patterning organic single-crystal transistor arrays. Nature 444, 913–917 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Vikram, C. S. et al. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004)

    Article  Google Scholar 

  6. 6

    Muccini, M. A bright future for organic field-effect transistors. Nature Mater. 5, 605–613 (2006)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Mater. 5, 69–74 (2006)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Kim, C., Facchetti, A. & Marks, T. J. Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance. Science 318, 76–80 (2007)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Gundlach, D. J. et al. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nature Mater. 7, 216–221 (2008)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Dimitrakopoulos, C. D. et al. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822–824 (1999)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Dodabalapur, A., Katz, H. E., Torsi, L. & Haddon, R. C. Organic heterostructure field-effect transistors. Science 269, 1560–1562 (1995)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Hulea, I. N. et al. Tunable Froehlich polarons in organic single-crystal transistors. Nature Mater. 5, 982–986 (2006)

    ADS  CAS  Article  Google Scholar 

  13. 13

    See, K. C., Becknell, A., Miragliotta, J. & Katz, H. E. Enhanced response of n-channel naphthalenetetracarboxylic diimide transistors to dimethyl methylphosphonate using phenolic receptors. Adv. Mater. 19, 3322–3327 (2007)

    CAS  Article  Google Scholar 

  14. 14

    Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–109 (2004)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Bao, Z., Rogers, J. A. & Katz, H. E. Printable organic and polymeric semiconducting materials and devices. J. Mater. Chem. 9, 1895–1904 (1999)

    CAS  Article  Google Scholar 

  17. 17

    Rogers, J. A. et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. USA 98, 4835–4840 (2001)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Gamota, D. R., Brazis, P., Kalyanasundaram, X. & Zhang, J. (eds) Printed Organic and Molecular Electronics (Kluwer Academic, 2004)

    Book  Google Scholar 

  19. 19

    Garnier, F., Hajlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1864–1866 (1994)

    CAS  Article  Google Scholar 

  20. 20

    Sivaramakrishnan, S. et al. Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nature Mater. 6, 149–155 (2007)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Facchetti, A., Yoon, M.-H. & Marks, T. J. Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics. Adv. Mater. 17, 1705–1725 (2005)

    CAS  Article  Google Scholar 

  22. 22

    Cho, J. et al. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 20, 686–690 (2008)

    CAS  Article  Google Scholar 

  23. 23

    McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Mater. 5, 328–333 (2006)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Pan, H. et al. Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J. Am. Chem. Soc. 129, 4112–4113 (2007)

    CAS  Article  Google Scholar 

  25. 25

    Dhoot, A. S. et al. Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. Proc. Natl Acad. Sci. USA 103, 11834–11837 (2006)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Ando, S. et al. n-Type organic field-effect transistors with very high electron mobility based on thiazole oligomers with trifluoromethylphenyl groups. J. Am. Chem. Soc. 127, 14996–14997 (2005)

    CAS  Article  Google Scholar 

  27. 27

    Chesterfield, R. J. et al. Organic thin film transistors based on n-alkyl perylene diimides: Charge transport kinetics as a function of gate voltage and temperature. J. Phys. Chem. B 108, 19281–19292 (2004)

    CAS  Article  Google Scholar 

  28. 28

    Anthopoulos, T. D. et al. High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Appl. Phys. Lett. 89, 213504 (2006)

    ADS  Article  Google Scholar 

  29. 29

    Waldauf, C., Schilinsky, P., Perisutti, M., Hauch, J. & Brabec, C. J. Solution-processed organic n-type thin-film transistors. Adv. Mater. 15, 2084–2088 (2003)

    CAS  Article  Google Scholar 

  30. 30

    Newman, C. R. et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 16, 4436–4451 (2004)

    CAS  Article  Google Scholar 

  31. 31

    Chua, L.-L. et al. General observation of n-type field-effect behavior in organic semiconductors. Nature 434, 194–199 (2005)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Letizia, J. n-Channel polymers by design: Optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. J. Am. Chem. Soc. 130, 9679–9694 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Zhan, X. et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 129, 7246–7247 (2007)

    CAS  Article  Google Scholar 

  34. 34

    Huttner, S., Sommer, M. & Thelakkat, M. n-type organic field effect transistors from perylene bisimide block copolymers and homopolymers. Appl. Phys. Lett. 92, 093302 (2008)

    ADS  Article  Google Scholar 

  35. 35

    Briseno, A. et al. Self-assembly, molecular packing, and electron transport in n-type polymer semiconductor nanobelts. Chem. Mater. 20, 4712–4719 (2008)

    CAS  Article  Google Scholar 

  36. 36

    Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Chen, Z., Zheng, Y., Yan, H. & Facchetti, A. Naphthalenedicarboximide- vs. perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate n-channel organic transistors. J. Am. Chem. Soc. 131, 8–9 (2009)

    CAS  Article  Google Scholar 

  38. 38

    Jones, B. A., Facchetti, A., Wasielewski, M. R. & Marks, T. J. Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 129, 15259–15278 (2007)

    CAS  Article  Google Scholar 

  39. 39

    Dholakia, G. R., Meyyappan, M., Facchetti, A. & Marks, T. J. Monolayer to multilayer nanostructural growth transition in n-type oligothiophenes on Au(111) and implications for organic field-effect transistor performance. Nano Lett. 6, 2447–2455 (2006)

    ADS  CAS  Article  Google Scholar 

  40. 40

    Stoliar, P. et al. Charge injection across self-assembly monolayers in organic field-effect transistors: Odd-even effects. J. Am. Chem. Soc. 129, 6477–6484 (2007)

    CAS  Article  Google Scholar 

  41. 41

    Menard, E. et al. High-performance n- and p-type single-crystal organic transistors with free-space gate dielectrics. Adv. Mater. 16, 2097–2101 (2004)

    CAS  Article  Google Scholar 

  42. 42

    Veres, J. et al. Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003)

    CAS  Article  Google Scholar 

  43. 43

    Richards, T., Bird, M. & Sirringhaus, H. A quantitative analytical model for static dipolar disorder broadening of the density of states at organic heterointerfaces. J. Chem. Phys. 128, 234905 (2008)

    ADS  Article  Google Scholar 

  44. 44

    Chang, J.-F., Sirringhaus, H., Giles, M., Heeney, M. & McCulloch, I. Relative importance of polaron activation and disorder on charge transport in high-mobility conjugated polymer field-effect transistors. Phys. Rev. B 76, 205204 (2007)

    ADS  Article  Google Scholar 

  45. 45

    Kline, R. J. et al. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38, 3312–3319 (2005)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Tse, N. N. et al. Gate bias stress effects due to polymer gate dielectrics in organic thin-film transistors. J. Appl. Phys. 103, 044506 (2008)

    Article  Google Scholar 

  47. 47

    Richards, T. & Sirringhaus, H. Bias-stress induced contact and channel degradation in staggered and coplanar organic field-effect transistors. Appl. Phys. Lett. 92, 023512 (2008)

    ADS  Article  Google Scholar 

  48. 48

    Salleo, A. & Street, R. A. Light-induced bias stress reversal in polyfluorene thin-film transistors. J. Appl. Phys. 94, 471–479 (2003)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Bredas, J.-L. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007)

    Article  Google Scholar 

  50. 50

    Westenhoff, S., Howard, I. A. & Friend, R. H. Probing the morphology and energy landscape of blends of conjugated polymers with sub-10 nm resolution. Phys. Rev. Lett. 101, 016102 (2008)

    ADS  Article  Google Scholar 

  51. 51

    Guo, X. & Watson, M. D. Conjugated polymers from naphthalene bisimide. Org. Lett. 10, 5333–5336 (2008)

    CAS  Article  Google Scholar 

Download references


We thank P. Inagaki for his leadership, T. J. Marks for discussions and P. Eckerle and BASF Future Business for their support.

Author Contributions H.Y. supervised device fabrication and analysis, performed the humidity tests, and fabricated the complementary inverters. Z.C. designed and synthesized the semiconductor polymer. Y.Z. fabricated the devices by spin-coating and monitored the stability in ambient conditions. C.N. fabricated most of the gravure- and inkjet-printed devices and acquired all AFM images. J.Q. optimized NDI monomer and dielectric synthesis. F.D. and M.K. supported the synthetic efforts. A.F. directed the project and wrote the manuscript.

Author information



Corresponding author

Correspondence to Antonio Facchetti.

Supplementary information

Supplementary Information

This file contains Supplementary Notes and Supplementary Figures S1-S17 with Legends (PDF 1548 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yan, H., Chen, Z., Zheng, Y. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing