Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sensing voltage across lipid membranes

Abstract

The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1–S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types of membrane proteins that contain S1–S4 voltage-sensing domains and the structure of an S1–S4 domain.
Figure 2: Structure of the paddle-chimaera Kv channel.
Figure 3: Charged amino acids in S1–S4 voltage-sensing domains.
Figure 4: Shifting charge interactions during movements of voltage sensors.
Figure 5: Inferring motions from accessibility and bridging experiments.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Galvani, L. De viribus electricitatis in motu musculari. Bononiensi scientiariumet artium atque instituto academia commentarii 7, 363–418 (1791)

    Google Scholar 

  2. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    CAS  Google Scholar 

  3. Noda, M. et al. Expression of functional sodium channels from cloned cDNA. Nature 322, 826–828 (1986)

    ADS  CAS  PubMed  Google Scholar 

  4. Tanabe, T. et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318 (1987)

    ADS  CAS  PubMed  Google Scholar 

  5. Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N. & Jan, L. Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila . Science 237, 770–775 (1987)

    ADS  CAS  PubMed  Google Scholar 

  6. Jiang, Y. et al. X-ray structure of a voltage-dependent K+ channel. Nature 423, 33–41 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Catterall, W. A. Molecular properties of voltage-sensitive sodium channels. Annu. Rev. Biochem. 55, 953–985 (1986)

    CAS  PubMed  Google Scholar 

  8. Guy, H. R. & Seetharamulu, P. Molecular model of the action potential sodium channel. Proc. Natl Acad. Sci. USA 83, 508–512 (1986)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kubo, Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362, 127–133 (1993)

    ADS  CAS  PubMed  Google Scholar 

  10. Papazian, D. M. et al. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293–1301 (1995)

    CAS  PubMed  Google Scholar 

  11. Li-Smerin, Y. & Swartz, K. J. Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proc. Natl Acad. Sci. USA 95, 8585–8589 (1998)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, Z., Klem, A. M. & Ramu, Y. Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J. Gen. Physiol. 120, 663–676 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu, Z., Klem, A. M. & Ramu, Y. Ion conduction pore is conserved among potassium channels. Nature 413, 809–813 (2001)

    ADS  CAS  PubMed  Google Scholar 

  14. Chakrapani, S., Cuello, L. G., Cortes, D. M. & Perozo, E. Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer. Structure 16, 398–409 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Armstrong, C. M. & Bezanilla, F. Currents related to movement of the gating particles of the sodium channels. Nature 242, 459–461 (1973)

    ADS  CAS  PubMed  Google Scholar 

  16. Schneider, M. F. & Chandler, W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature 242, 244–246 (1973)

    ADS  CAS  PubMed  Google Scholar 

  17. Keynes, R. D. & Rojas, E. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J. Physiol. (Lond.) 239, 393–434 (1974)

    CAS  Google Scholar 

  18. Schoppa, N. E., McCormack, K., Tanouye, M. A. & Sigworth, F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712–1715 (1992)

    ADS  CAS  PubMed  Google Scholar 

  19. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996)

    CAS  PubMed  Google Scholar 

  20. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996)

    CAS  PubMed  Google Scholar 

  21. Noceti, F. et al. Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels. J. Gen. Physiol. 108, 143–155 (1996)

    CAS  PubMed  Google Scholar 

  22. Ahern, C. A. & Horn, R. Specificity of charge-carrying residues in the voltage sensor of potassium channels. J. Gen. Physiol. 123, 205–216 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, N. & Horn, R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15, 213–218 (1995)

    CAS  PubMed  Google Scholar 

  24. Yang, N., George, A. L. & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996)

    PubMed  Google Scholar 

  25. Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron 16, 387–397 (1996)

    CAS  PubMed  Google Scholar 

  26. Yusaf, S. P., Wray, D. & Sivaprasadarao, A. Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflugers Arch. 433, 91–97 (1996)

    CAS  PubMed  Google Scholar 

  27. Mannuzzu, L. M., Moronne, M. M. & Isacoff, E. Y. Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271, 213–216 (1996)

    ADS  CAS  PubMed  Google Scholar 

  28. Starace, D. M., Stefani, E. & Bezanilla, F. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. Neuron 19, 1319–1327 (1997)

    CAS  PubMed  Google Scholar 

  29. Cha, A. & Bezanilla, F. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19, 1127–1140 (1997)

    CAS  PubMed  Google Scholar 

  30. Cha, A. & Bezanilla, F. Structural implications of fluorescence quenching in the Shaker K+ channel. J. Gen. Physiol. 112, 391–408 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Glauner, K. S., Mannuzzu, L. M., Gandhi, C. S. & Isacoff, E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402, 813–817 (1999)

    ADS  CAS  PubMed  Google Scholar 

  32. Cha, A., Snyder, G. E., Selvin, P. R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999)

    ADS  CAS  PubMed  Google Scholar 

  33. Gandhi, C. S., Loots, E. & Isacoff, E. Y. Reconstructing voltage sensor-pore interaction from a fluorescence scan of a voltage-gated K+ channel. Neuron 27, 585–595 (2000)

    CAS  PubMed  Google Scholar 

  34. Starace, D. M. & Bezanilla, F. Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker K+ channel. J. Gen. Physiol. 117, 469–490 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003)

    ADS  CAS  PubMed  Google Scholar 

  36. Laine, M. et al. Atomic proximity between S4 segment and pore domain in Shaker potassium channels. Neuron 39, 467–481 (2003)

    CAS  PubMed  Google Scholar 

  37. Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005)

    CAS  PubMed  Google Scholar 

  38. Campos, F. V., Chanda, B., Roux, B. & Bezanilla, F. Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. Proc. Natl Acad. Sci. USA 104, 7904–7909 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005)

    ADS  CAS  PubMed  Google Scholar 

  40. Kohout, S. C., Ulbrich, M. H., Bell, S. C. & Isacoff, E. Y. Subunit organization and functional transitions in Ci-VSP. Nature Struct. Mol. Biol. 15, 106–108 (2008)

    CAS  Google Scholar 

  41. Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006)

    ADS  CAS  PubMed  Google Scholar 

  42. Ramsey, I. S., Moran, M. M., Chong, J. A. & Clapham, D. E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tombola, F., Ulbrich, M. H. & Isacoff, E. Y. The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron 58, 546–556 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, S. Y., Letts, J. A. & Mackinnon, R. Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc. Natl Acad. Sci. USA 105, 7692–7695 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alabi, A. A., Bahamonde, M. I., Jung, H. J., Kim, J. I. & Swartz, K. J. Portability of paddle motif function and pharmacology in voltage sensors. Nature 450, 370–375 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005)

    ADS  CAS  PubMed  Google Scholar 

  47. Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007)

    ADS  CAS  PubMed  Google Scholar 

  48. Monks, S. A., Needleman, D. J. & Miller, C. Helical structure and packing orientation of the S2 segment in the Shaker K+ channel. J. Gen. Physiol. 113, 415–423 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Li-Smerin, Y., Hackos, D. H. & Swartz, K. J. α-helical structural elements within the voltage-sensing domains of a K+ channel. J. Gen. Physiol. 115, 33–49 (2000a)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hong, K. H. & Miller, C. The lipid–protein interface of a Shaker K+ channel. J. Gen. Physiol. 115, 51–58 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li-Smerin, Y. & Swartz, K. J. Helical structure of the COOH terminus of S3 and its contribution to the gating modifier toxin receptor in voltage-gated ion channels. J. Gen. Physiol. 117, 205–218 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Swartz, K. J. & MacKinnon, R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18, 665–673 (1997a)

    CAS  PubMed  Google Scholar 

  53. Li-Smerin, Y. & Swartz, K. J. Localization and molecular determinants of the hanatoxin receptors on the voltage-sensing domain of a K+ channel. J. Gen. Physiol. 115, 673–684 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, S. Y. & MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430, 232–235 (2004)

    ADS  CAS  PubMed  Google Scholar 

  55. Phillips, L. R. et al. Voltage-sensor activation with a tarantula toxin as cargo. Nature 436, 857–860 (2005)

    ADS  CAS  PubMed  Google Scholar 

  56. Milescu, M. et al. Tarantula toxins interact with voltage sensors within lipid membranes. J. Gen. Physiol. 130, 497–511 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Long, S. B., Campbell, E. B. & Mackinnon, R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309, 903–908 (2005)

    ADS  CAS  PubMed  Google Scholar 

  58. Ruta, V., Jiang, Y., Lee, A., Chen, J. & MacKinnon, R. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422, 180–185 (2003)

    ADS  CAS  PubMed  Google Scholar 

  59. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002)

    ADS  CAS  PubMed  Google Scholar 

  60. Tombola, F., Pathak, M. M. & Isacoff, E. Y. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45, 379–388 (2005)

    CAS  PubMed  Google Scholar 

  61. Sokolov, S., Scheuer, T. & Catterall, W. A. Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47, 183–189 (2005)

    CAS  PubMed  Google Scholar 

  62. Freites, J. A., Tobias, D. J. & White, S. H. A voltage-sensor water pore. Biophys. J. 91, L90–92 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Asamoah, O. K., Wuskell, J. P., Loew, L. M. & Bezanilla, F. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37, 85–97 (2003)

    CAS  PubMed  Google Scholar 

  64. Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004)

    ADS  CAS  PubMed  Google Scholar 

  65. Ahern, C. A. & Horn, R. Focused electric field across the voltage sensor of potassium channels. Neuron 48, 25–29 (2005)

    CAS  PubMed  Google Scholar 

  66. Banerjee, A. & MacKinnon, R. Inferred motions of the S3a helix during voltage-dependent K+ channel gating. J. Mol. Biol. 381, 569–580 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cuello, L. G., Cortes, D. M. & Perozo, E. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306, 491–495 (2004)

    ADS  CAS  PubMed  Google Scholar 

  68. Bosmans, F., Martin-Eauclaire, M. F. & Swartz, K. J. Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456, 202–208 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vamvouka, M., Cieslak, J., Van Eps, N., Hubbell, W. & Gross, A. The structure of the lipid-embedded potassium channel voltage sensor determined by double-electron-electron resonance spectroscopy. Protein Sci. 17, 506–517 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Schmidt, D., Jiang, Q. X. & MacKinnon, R. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444, 775–779 (2006)

    ADS  CAS  PubMed  Google Scholar 

  71. Jogini, V. & Roux, B. Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Biophys. J. 93, 3070–3082 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sands, Z. A. & Sansom, M. S. How does a voltage sensor interact with a lipid bilayer? Simulations of a potassium channel domain. Structure 15, 235–244 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Freites, J. A., Tobias, D. J., von Heijne, G. & White, S. H. Interface connections of a transmembrane voltage sensor. Proc. Natl Acad. Sci. USA 102, 15059–15064 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramu, Y., Xu, Y. & Lu, Z. Enzymatic activation of voltage-gated potassium channels. Nature 442, 696–699 (2006)

    ADS  CAS  PubMed  Google Scholar 

  75. Xu, Y., Ramu, Y. & Lu, Z. Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451, 826–829 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Soler-Llavina, G. J., Chang, T. H. & Swartz, K. J. Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel. Neuron 52, 623–634 (2006)

    CAS  PubMed  Google Scholar 

  77. Nguyen, T. P. & Horn, R. Movement and crevices around a sodium channel S3 segment. J. Gen. Physiol. 120, 419–436 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gandhi, C. S., Clark, E., Loots, E., Pralle, A. & Isacoff, E. Y. The orientation and molecular movement of a K+ channel voltage-sensing domain. Neuron 40, 515–525 (2003)

    CAS  PubMed  Google Scholar 

  79. Darman, R. B., Ivy, A. A., Ketty, V. & Blaustein, R. O. Constraints on voltage sensor movement in the Shaker K+ channel. J. Gen. Physiol. 128, 687–699 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Islas, L. D. & Sigworth, F. J. Electrostatics and the gating pore of Shaker potassium channels. J. Gen. Physiol. 117, 69–89 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chanda, B., Asamoah, O. K., Blunck, R., Roux, B. & Bezanilla, F. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436, 852–856 (2005)

    ADS  CAS  PubMed  Google Scholar 

  82. Grabe, M., Lai, H. C., Jain, M., Nung Jan, Y. & Yeh Jan, L. Structure prediction for the down state of a potassium channel voltage sensor. Nature 445, 550–553 (2007)

    CAS  PubMed  Google Scholar 

  83. Posson, D. J., Ge, P., Miller, C., Bezanilla, F. & Selvin, P. R. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436, 848–851 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Posson, D. J. & Selvin, P. R. Extent of voltage sensor movement during gating of shaker K+ channels. Neuron 59, 98–109 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pathak, M. M. et al. Closing in on the resting state of the Shaker K+ channel. Neuron 56, 124–140 (2007)

    CAS  PubMed  Google Scholar 

  86. Clayton, G. M., Altieri, S., Heginbotham, L., Unger, V. M. & Morais-Cabral, J. H. Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc. Natl Acad. Sci. USA 105, 1511–1515 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ledwell, J. L. & Aldrich, R. W. Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. J. Gen. Physiol. 113, 389–414 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank J. Diamond, J. Mindell, S. Silberberg and the members of the Swartz laboratory for discussions. I thank R. MacKinnon for providing coordinates for the paddle-chimera and those for the superimposed structures shown in Fig. 3. This work was supported by the Intramural Research Program of the NINDS, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenton J. Swartz.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartz, K. Sensing voltage across lipid membranes. Nature 456, 891–897 (2008). https://doi.org/10.1038/nature07620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07620

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing