Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions

A Retraction to this article was published on 16 July 2014

Abstract

Dynamically polarized membrane proteins define different cell boundaries and have an important role in intercellular communication—a vital feature of multicellular development. Efflux carriers for the signalling molecule auxin from the PIN family1 are landmarks of cell polarity in plants and have a crucial involvement in auxin distribution-dependent development including embryo patterning, organogenesis and tropisms2,3,4,5,6,7. Polar PIN localization determines the direction of intercellular auxin flow8, yet the mechanisms generating PIN polarity remain unclear. Here we identify an endocytosis-dependent mechanism of PIN polarity generation and analyse its developmental implications. Real-time PIN tracking showed that after synthesis, PINs are initially delivered to the plasma membrane in a non-polar manner and their polarity is established by subsequent endocytic recycling. Interference with PIN endocytosis either by auxin or by manipulation of the Arabidopsis Rab5 GTPase pathway prevents PIN polarization. Failure of PIN polarization transiently alters asymmetric auxin distribution during embryogenesis and increases the local auxin response in apical embryo regions. This results in ectopic expression of auxin pathway-associated root-forming master regulators in embryonic leaves and promotes homeotic transformation of leaves to roots. Our results indicate a two-step mechanism for the generation of PIN polar localization and the essential role of endocytosis in this process. It also highlights the link between endocytosis-dependent polarity of individual cells and auxin distribution-dependent cell fate establishment for multicellular patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocytic recycling-based two-step mechanism generates PIN polarity.
Figure 2: Rab5-mediated endocytosis is required for PIN polarization.
Figure 3: Manipulation of the Rab5 pathway during embryogenesis leads to defects in PIN polarity, auxin response distribution and embryo development.
Figure 4: Manipulation of Rab5 pathway leads to homeotic leaf-to-root transformation.

Similar content being viewed by others

References

  1. Petrasek, J. et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914–918 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Galweiler, L. et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis . Nature 426, 147–153 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Benkova, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Heisler, M. G. et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Luschnig, C., Gaxiola, R. A., Grisafi, P. & Fink, G. R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12, 2175–2187 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wisniewska, J. et al. Polar PIN localization directs auxin flow in plants. Science 312, 883 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, Y. The role of local biosynthesis of auxin and cytokinin in plant development. Curr. Opin. Plant Biol. 11, 16–22 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka, H., Dhonukshe, P., Brewer, P. B. & Friml, J. Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell. Mol. Life Sci. 63, 2738–2754 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. Dhonukshe, P. et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis . Curr. Biol. 17, 520–527 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Geldner, N., Friml, J., Stierhof, Y. D., Jurgens, G. & Palme, K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kleine-Vehn, J. et al. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis . Curr. Biol. 18, 526–531 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Friml, J., Wisniewska, J., Benkova, E., Mendgen, K. & Palme, K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis . Nature 415, 806–809 (2002)

    Article  ADS  PubMed  Google Scholar 

  16. Friml, J. et al. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862–865 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Michniewicz, M. et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130, 1044–1056 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Men, S. et al. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nature Cell Biol. 10, 237–244 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol. 5, 287–293 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Paciorek, T. et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435, 1251–1256 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728 (1992)

    Article  CAS  PubMed  Google Scholar 

  22. Ueda, T., Uemura, T., Sato, M. H. & Nakano, A. Functional differentiation of endosomes in Arabidopsis cells. Plant J. 40, 783–789 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Friml, J. et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis . Cell 108, 661–673 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Swarup, R. et al. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 15, 2648–2653 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleine-Vehn, J., Dhonukshe, P., Swarup, R., Bennett, M. & Friml, J. Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18, 3171–3181 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weijers, D. et al. An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128, 4289–4299 (2001)

    CAS  PubMed  Google Scholar 

  28. Benfey, P. N. & Chua, N. H. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250, 959–966 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Aida, M. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Dhonukshe, P. et al. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev. Cell 10, 137–150 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Xu, J. et al. A molecular framework for plant regeneration. Science 311, 385–388 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Xu, J. & Scheres, B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. Plant Cell 17, 525–536 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaillais, Y. et al. The retromer protein VPS29 links cell polarity and organ initiation in plants. Cell 130, 1057–1070 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. Geldner, N. et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Richter, S. et al. Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448, 488–492 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y. D. & Schumacher, K. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis . Plant Cell 18, 715–730 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Swarup, R. et al. Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16, 3069–3083 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99, 463–472 (1999)

    Article  CAS  PubMed  Google Scholar 

  40. Goh, T. et al. VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19, 3504–3515 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abas, L. et al. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nature Cell Biol. 8, 249–256 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. Lam, S. K. et al. Rice SCAMP1 defines clathrin-coated, trans-golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19, 296–319 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Langhans, M. et al. Immunolocalization of plasma-membrane H+-ATPase and tonoplast-type pyrophosphatase in the plasma membrane of the sieve element-companion cell complex in the stem of Ricinus communis L. Planta 213, 11–19 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. Movafeghi, A., Happel, N., Pimpl, P., Tai, G. H. & Robinson, D. G. Arabidopsis Sec21p and Sec23p homologs. Probable coat proteins of plant COP-coated vesicles. Plant Physiol. 119, 1437–1446 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Bennett, T. Gaude, L. Jiang, G. Jürgens, C. Luschnig, E. Meywerowitz, W. Michalke, R. Offringa, D. Robinson, K. Schumacher, J. Wiedenmann and D. Weijers for sharing published material and RIKEN, SALK and NASC Arabidopsis stock centres for providing mutant lines and the RNAi construct. We thank W. Muller for assistance with SEM and F. Kindt and R. Leito for photography. We acknowledge the Center for Plant Molecular Biology (ZMBP), University of Tübingen, Germany for the facilities during the initial phase of the project. This work was supported by VolkswagenStiftung (P.D. and J.F.), EMBO Long Term Fellowship and Netherlands Organization for Scientific Research (NWO)-VENI grant (P.D.), EMBO Young Investigator Program and Odysseus program of FWO (J.F.), HFSP fellowship (H.T.), EMBO Long Term Fellowship and HFSP fellowship (A.P.M.), EMBO Long Term Fellowship (K.P.), NWO-VIDI grant (I.B.), HFSP fellowship and Swiss National Science Foundation (N.G.), HHMI, USDA and NIH (J.C.), NWO-Spinoza award (B.S.) and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (T.U. and A.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pankaj Dhonukshe or Jiří Friml.

Supplementary information

Supplementary Information

This file contains Supplementary Results, Supplementary References, Supplementary Figures 1-14 with Legends and Supplementary Table 1. (PDF 15176 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhonukshe, P., Tanaka, H., Goh, T. et al. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456, 962–966 (2008). https://doi.org/10.1038/nature07409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07409

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing