Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of ALK as a major familial neuroblastoma predisposition gene

This article has been updated

Abstract

Neuroblastoma is a childhood cancer that can be inherited, but the genetic aetiology is largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase (ALK) gene explain most hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at chromosome bands 2p23–24 using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate germline missense mutations in the tyrosine kinase domain of ALK that segregated with the disease in eight separate families. Resequencing in 194 high-risk neuroblastoma samples showed somatically acquired mutations in the tyrosine kinase domain in 12.4% of samples. Nine of the ten mutations map to critical regions of the kinase domain and were predicted, with high probability, to be oncogenic drivers. Mutations resulted in constitutive phosphorylation, and targeted knockdown of ALK messenger RNA resulted in profound inhibition of growth in all cell lines harbouring mutant or amplified ALK, as well as in two out of six wild-type cell lines for ALK. Our results demonstrate that heritable mutations of ALK are the main cause of familial neuroblastoma, and that germline or acquired activation of this cell-surface kinase is a tractable therapeutic target for this lethal paediatric malignancy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Eight neuroblastoma pedigrees with ALK mutations.
Figure 2: Germline and somatic ALK mutations.
Figure 3: Representative ALK copy number alterations in five neuroblastoma primary tumours.
Figure 4: ALK is highly expressed and the kinase is phosphorylated in neuroblastoma cell lines harbouring activating mutations.
Figure 5: ALK knockdown results in growth inhibition of ALK mutated or amplified neuroblastoma cell lines.

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

All sequence variations have been deposited to GenBank under accession numbers EU660517, EU660518, EU660519, EU660520, EU660521, EU660522, EU660523, EU660524, EU660525, EU660526 and EU660527.

Change history

  • 16 October 2008

    The AOP version of this paper contained an affiliation error and an erroneous sentence in the Discussion. These were corrected for print on 16 October 2008.

References

  1. 1

    Maris, J. M., Hogarty, M. D., Bagatell, R. & Cohn, S. L. Neuroblastoma. Lancet 369, 2106–2120 (2007)

    CAS  Article  Google Scholar 

  2. 2

    Matthay, K. K. et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N. Engl. J. Med. 341, 1165–1173 (1999)

    CAS  Article  Google Scholar 

  3. 3

    Schwab, M. et al. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc . Nature 308, 288–291 (1984)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Attiyeh, E. F. et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N. Engl. J. Med. 353, 2243–2253 (2005)

    CAS  Article  Google Scholar 

  5. 5

    Knudson, A. G. J. & Strong, L. C. Mutation and cancer: Neuroblastoma and pheochromocytoma. Am. J. Hum. Genet. 24, 514–522 (1972)

    PubMed  PubMed Central  Google Scholar 

  6. 6

    Kushner, B. H., Gilbert, F. & Helson, L. Familial neuroblastoma. Case reports, literature review, and etiologic considerations. Cancer 57, 1887–1893 (1986)

    CAS  Article  Google Scholar 

  7. 7

    Maris, J. M. et al. Molecular genetic analysis of familial neuroblastoma. Eur. J. Cancer 33, 1923–1928 (1997)

    CAS  Article  Google Scholar 

  8. 8

    Friedman, D. L. et al. Increased risk of cancer among siblings of long-term childhood cancer survivors: a report from the childhood cancer survivor study. Cancer Epidemiol. Biomarkers Prev. 14, 1922–1927 (2005)

    Article  Google Scholar 

  9. 9

    Maris, J. M. & Brodeur, G. M. in Neuroblastoma (eds Cheung, N.-K. V. & Cohn, S. L.) 21–26 (Springer, 2005)

    Google Scholar 

  10. 10

    Longo, L. et al. Genetic predisposition to familial neuroblastoma: identification of two novel genomic regions at 2p and 12p. Hum. Hered. 63, 205–211 (2007)

    Article  Google Scholar 

  11. 11

    Maris, J. M. et al. Evidence for a hereditary neuroblastoma predisposition locus at chromosome 16p12–13. Cancer Res. 62, 6651–6658 (2002)

    CAS  PubMed  Google Scholar 

  12. 12

    Perri, P. et al. Weak linkage at 4p16 to predisposition for human neuroblastoma. Oncogene 21, 8356–8360 (2002)

    CAS  Article  Google Scholar 

  13. 13

    Amiel, J. et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nature Genet. 33, 459–461 (2003)

    CAS  Article  Google Scholar 

  14. 14

    Mosse, Y. P. et al. Germline PHOX2B mutation in hereditary neuroblastoma. Am. J. Hum. Genet. 75, 727–730 (2004)

    CAS  Article  Google Scholar 

  15. 15

    Trochet, D. et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am. J. Hum. Genet. 74, 761–764 (2004)

    CAS  Article  Google Scholar 

  16. 16

    Raabe, E. H. et al. Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene 27, 469–476 (2008)

    CAS  Article  Google Scholar 

  17. 17

    van Limpt, V. et al. The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene 23, 9280–9288 (2004)

    CAS  Article  Google Scholar 

  18. 18

    Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–2995 (1997)

    CAS  Article  Google Scholar 

  19. 19

    Osajima-Hakomori, Y. et al. Biological role of anaplastic lymphoma kinase in neuroblastoma. Am. J. Pathol. 167, 213–222 (2005)

    CAS  Article  Google Scholar 

  20. 20

    George, R. E. et al. Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS ONE 2, e255 (2007)

    ADS  Article  Google Scholar 

  21. 21

    Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263, 1281–1284 (1994)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Griffin, C. A. et al. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 59, 2776–2780 (1999)

    CAS  PubMed  Google Scholar 

  23. 23

    Jazii, F. R. et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J. Gastroenterol. 12, 7104–7112 (2006)

    CAS  Article  Google Scholar 

  24. 24

    Soda, M. et al. Identification of the transforming EML4ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007)

    CAS  Article  Google Scholar 

  26. 26

    Torkamani, A. & Schork, N. J. Accurate prediction of deleterious protein kinase polymorphisms. Bioinformatics 23, 2918–2925 (2007)

    CAS  Article  Google Scholar 

  27. 27

    Torkamani, A. & Schork, N. J. Prediction of cancer driver mutations in protein kinases. Cancer Res. 68, 1675–1682 (2008)

    CAS  Article  Google Scholar 

  28. 28

    Ikenoue, T. et al. Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. Cancer Res. 63, 8132–8137 (2003)

    CAS  PubMed  Google Scholar 

  29. 29

    Ikenoue, T. et al. Different effects of point mutations within the B-Raf glycine-rich loop in colorectal tumors on mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase and nuclear factor κB pathway and cellular transformation. Cancer Res. 64, 3428–3435 (2004)

    CAS  Article  Google Scholar 

  30. 30

    Kannan, N. & Neuwald, A. F. Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J. Mol. Biol. 351, 956–972 (2005)

    CAS  Article  Google Scholar 

  31. 31

    Jeffers, M. et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc. Natl Acad. Sci. USA 94, 11445–11450 (1997)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Balak, M. N. et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res. 12, 6494–6501 (2006)

    CAS  Article  Google Scholar 

  33. 33

    Lee, J. W. et al. ERBB2 kinase domain mutation in the lung squamous cell carcinoma. Cancer Lett. 237, 89–94 (2006)

    CAS  Article  Google Scholar 

  34. 34

    Lee, J. W. et al. Somatic mutations of ERBB2 kinase domain in gastric, colorectal, and breast carcinomas. Clin. Cancer Res. 12, 57–61 (2006)

    CAS  Article  Google Scholar 

  35. 35

    Wang, Q. et al. Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res. 66, 6050–6062 (2006)

    CAS  Article  Google Scholar 

  36. 36

    Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004)

    CAS  Article  Google Scholar 

  37. 37

    Maris, J. M. et al. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N. Engl. J. Med. 358, 2585–2593 (2008)

    CAS  Article  Google Scholar 

  38. 38

    Iwahara, T. et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14, 439–449 (1997)

    CAS  Article  Google Scholar 

  39. 39

    Chiarle, R., Voena, C., Ambrogio, C., Piva, R. & Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nature Rev. Cancer 8, 11–23 (2008)

    CAS  Article  Google Scholar 

  40. 40

    Lamant, L. et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am. J. Pathol. 156, 1711–1721 (2000)

    CAS  Article  Google Scholar 

  41. 41

    Motegi, A., Fujimoto, J., Kotani, M., Sakuraba, H. & Yamamoto, T. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J. Cell Sci. 117, 3319–3329 (2004)

    CAS  Article  Google Scholar 

  42. 42

    Miyake, I. et al. Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene 21, 5823–5834 (2002)

    CAS  Article  Google Scholar 

  43. 43

    Dirks, W. G. et al. Expression and functional analysis of the anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int. J. Cancer 100, 49–56 (2002)

    CAS  Article  Google Scholar 

  44. 44

    McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 68, 3389–3395 (2008)

    CAS  Article  Google Scholar 

  45. 45

    Wigginton, J. E. & Abecasis, G. R. PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 21, 3445–3447 (2005)

    CAS  Article  Google Scholar 

  46. 46

    Abecasis, G. R., Cherny, S. S., Cookson, W. O. & Cardon, L. R. Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genet. 30, 97–101 (2002)

    CAS  Article  Google Scholar 

  47. 47

    Li, M., Boehnke, M. & Abecasis, G. R. Joint modeling of linkage and association: identifying SNPs responsible for a linkage signal. Am. J. Hum. Genet. 76, 934–949 (2005)

    CAS  Article  Google Scholar 

  48. 48

    Yu, N. et al. Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Anal. Chem. 78, 35–43 (2006)

    CAS  Article  Google Scholar 

  49. 49

    Cole, K. A. et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol. Cancer Res. 6, 735–742 (2008)

    CAS  Article  Google Scholar 

  50. 50

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method. Methods 25, 402–408 (2001)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the families and children that participated in this research study, and the Children’s Oncology Group for providing specimens. We thank W. London for providing statistical analyses related to the Children’s Oncology Group tumour set, H. Rydbeck for his assistance with the linkage analysis, M. Wasik for technical assistance, and J. Felgenhauer, N. Van Roy and C. McConville for providing neuroblastoma pedigrees. This work was supported in part by National Institutes of Health grants K08-111733 (Y.P.M.), R01-CA78454 (J.M.M.), R01-CA87847 (J.M.M.), an American Society of Clinical Oncology Career Development Award (Y.P.M.), the Foerderer-Murray Fund (Y.P.M.), the Carly Hillman Fund (Y.P.M.), the Alex’s Lemonade Stand Foundation (J.M.M.), the Andrew’s Army Foundation (J.M.M.), the Giulio D’Angio Endowed Chair (J.M.M.), the Italian Neuroblastoma Foundation (L.L.), the Center for Applied Genomics at the Joseph Stokes Research Institute (H.H.), Scripps Genomic Medicine (A.T., N.J.S.), the Scripps Dickinson Scholarship (A.T.), and the Abramson Family Cancer Research Institute (J.M.M.).

Author Contributions Y.P.M. and J.M.M. designed the experiments and wrote the manuscript. Y.P.M., M.L., J.M.M., G.L., F.S., P.P. and G.P.T. collected the families for the linkage analysis. Y.P.M., M.L., L.L., C.K., C.H., E.R., H.H. and M.D. performed the genome-wide genotyping and linkage analysis. M.L. performed the DNA sequencing and analyses. K.A.C., A.W. and M.J.L. performed the siRNA experiments. E.F.A., H.H. and Y.P.M. performed the tumour SNP genotyping/copy number analyses. J.E.L., K.A.C. and A.W. performed the expression analyses. K.A.C., R.S. and M.L. performed the protein work. G.M.B. initiated the collection of neuroblastoma pedigrees. A.T. and N.J.S. performed the structural analysis of ALK coding mutations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John M. Maris.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mossé, Y., Laudenslager, M., Longo, L. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930–935 (2008). https://doi.org/10.1038/nature07261

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing