The increasing intensity of the strongest tropical cyclones


Atlantic tropical cyclones are getting stronger on average, with a 30-year trend that has been related to an increase in ocean temperatures over the Atlantic Ocean and elsewhere1,2,3,4. Over the rest of the tropics, however, possible trends in tropical cyclone intensity are less obvious, owing to the unreliability and incompleteness of the observational record and to a restricted focus, in previous trend analyses, on changes in average intensity. Here we overcome these two limitations by examining trends in the upper quantiles of per-cyclone maximum wind speeds (that is, the maximum intensities that cyclones achieve during their lifetimes), estimated from homogeneous data derived from an archive of satellite records. We find significant upward trends for wind speed quantiles above the 70th percentile, with trends as high as 0.3 ± 0.09 m s-1 yr-1 (s.e.) for the strongest cyclones. We note separate upward trends in the estimated lifetime-maximum wind speeds of the very strongest tropical cyclones (99th percentile) over each ocean basin, with the largest increase at this quantile occurring over the North Atlantic, although not all basins show statistically significant increases. Our results are qualitatively consistent with the hypothesis that as the seas warm, the ocean has more energy to convert to tropical cyclone wind.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Analysis and model results of satellite-derived tropical cyclone lifetime-maximum wind speeds.
Figure 2: Trends in satellite-derived tropical cyclone lifetime-maximum wind speeds from quantile regression.
Figure 3: Quantile regression of tropical cyclone lifetime-maximum wind speed on globally averaged tropical storm basin SST.


  1. 1

    Emanuel, K. A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Trenberth, K. Uncertainty in hurricanes and global warming. Science 308, 1753–1754 (2005)

    CAS  Article  Google Scholar 

  4. 4

    Elsner, J. B. Granger causality and Atlantic hurricanes. Tellus 59A, 476–485 (2007)

    ADS  Article  Google Scholar 

  5. 5

    Emanuel, K. A. The theory of hurricanes. Annu. Rev. Fluid Mech. 23, 179–196 (1991)

    ADS  Article  Google Scholar 

  6. 6

    Holland, G. J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 54, 2519–2541 (1997)

    ADS  Article  Google Scholar 

  7. 7

    Knutson, T. R. & Tuleya, R. E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim. 17, 3477–3495 (2004)

    ADS  Article  Google Scholar 

  8. 8

    Bengtsson, L. et al. How may tropical cyclones change in a warmer climate. Tellus 59A, 539–561 (2007)

    ADS  Article  Google Scholar 

  9. 9

    Pielke, R. A., Landsea, C., Mayeld, M., Laver, J. & Pasch, R. Hurricanes and global warming. Bull. Am. Meteorol. Soc. 86, 1571–1575 (2005)

    ADS  Article  Google Scholar 

  10. 10

    Landsea, C. W. Hurricanes and global warming. Nature 438, E11–E13 (2005)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Chan, J. C. L. Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science 311, 1713 (2006)

    CAS  Article  Google Scholar 

  12. 12

    Klotzbach, P. J. Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett. 33 10.1029/2006GL025881 (2006)

    Article  Google Scholar 

  13. 13

    Landsea, C. W., Harper, B. A., Hoarau, K. & Knaff, J. A. Can we detect trends in extreme tropical cyclones? Science 313, 452–454 (2006)

    CAS  Article  Google Scholar 

  14. 14

    Vecchi, G. A. & Soden, B. J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1070 (2007)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Swanson, K. L. Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst. 9 10.1029/2007GC001844 (2008)

    Article  Google Scholar 

  16. 16

    Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J. & Harper, B. A. A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett. 34 10.1029/2006GL028836 (2007)

  17. 17

    Shen, W., Tuleya, R. E. & Ginis, I. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming. J. Clim. 13, 109–121 (2000)

    ADS  Article  Google Scholar 

  18. 18

    Bister, M. & Emanuel, K. A. Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability. J. Geophys. Res. 107 10.1029/2001JD000776 (2002)

  19. 19

    Rayner, N. A. et al. Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108 10.1029/2002JD002670 (2003)

  20. 20

    Knapp, K. R. Calibration assessment of ISCCP geostationary infrared observations using HIRS. J. Atmos. Oceanic Technol. 25, 183–195 (2008)

    ADS  Article  Google Scholar 

  21. 21

    Knapp, K. R. & Kossin, J. P. A new global tropical cyclone data set from ISCCP B1 geostationary satellite observations. J. Appl. Remote Sensing 1, 013505 (2007)

    Article  Google Scholar 

  22. 22

    Knapp, K. R., Bates, J. J. & Barkstrom, B. Scientific data stewardship: Lessons learned from a satellite-data rescue effort. Bull. Am. Meteorol. Soc. 88, 1359–1361 (2007)

    ADS  Article  Google Scholar 

  23. 23

    Franklin, J. L., Black, M. L. & Valde, K. GPS dropwindsonde wind profiles in hurricanes and their operational implications. Weather Forecast. 18, 32–44 (2003)

    ADS  Article  Google Scholar 

  24. 24

    Gunshor, M. M., Schmit, T. J. & Menzel, W. P. Intercalibration of the infrared window and water vapor channels on operational geostationary environmental satellites using a single polar-orbiting satellite. J. Atmos. Oceanic Technol. 21, 61–68 (2004)

    ADS  Article  Google Scholar 

  25. 25

    Yu, K., Lu, Z. & Stander, J. Quantile regression: applications and current research areas. Statistician 52, 331–350 (2003)

    MathSciNet  Google Scholar 

Download references


The work was supported by the US National Science Foundation (ATM-0738172 and ATM-0614812) and by the Risk Prediction Initiative of the Bermuda Institute for Ocean Studies (RPI06-3-001).

Author information



Corresponding author

Correspondence to James B. Elsner.

Supplementary information

Supplementary Information

The file contains Supplementary Methods and Supplementary Figures 1-8 with Legends. (PDF 631 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elsner, J., Kossin, J. & Jagger, T. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.