Imaging and dynamics of light atoms and molecules on graphene


Observing the individual building blocks of matter is one of the primary goals of microscopy. The invention of the scanning tunnelling microscope1 revolutionized experimental surface science in that atomic-scale features on a solid-state surface could finally be readily imaged. However, scanning tunnelling microscopy has limited applicability due to restrictions in, for example, sample conductivity, cleanliness, and data acquisition rate. An older microscopy technique, that of transmission electron microscopy (TEM)2,3, has benefited tremendously in recent years from subtle instrumentation advances, and individual heavy (high-atomic-number) atoms can now be detected by TEM4,5,6,7 even when embedded within a semiconductor material8,9. But detecting an individual low-atomic-number atom, for example carbon or even hydrogen, is still extremely challenging, if not impossible, via conventional TEM owing to the very low contrast of light elements2,3,10,11,12. Here we demonstrate a means to observe, by conventional TEM, even the smallest atoms and molecules: on a clean single-layer graphene membrane, adsorbates such as atomic hydrogen and carbon can be seen as if they were suspended in free space. We directly image such individual adatoms, along with carbon chains and vacancies, and investigate their dynamics in real time. These techniques open a way to reveal dynamics of more complex chemical reactions or identify the atomic-scale structure of unknown adsorbates. In addition, the study of atomic-scale defects in graphene may provide insights for nanoelectronic applications of this interesting material.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Graphene membrane sample as observed by TEM.
Figure 2: Adatom images.
Figure 3: Dynamics of defects.
Figure 4: Molecular scale adsorbates.


  1. 1

    Binning, G., Rohrer, H., Gerber, Ch. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

    ADS  Article  Google Scholar 

  2. 2

    Spence, J. C. H. High-Resolution Electron Microscopy (Oxford Univ. Press, Oxford, UK, 2003)

    Google Scholar 

  3. 3

    Buseck, P. R., Cowley, J. M. & Eyring, L. High-Resolution Transmission Electron Microscopy (Oxford Univ. Press, Oxford, UK, 1988)

    Google Scholar 

  4. 4

    Crewe, A. V., Wall, J. & Langmore, J. Visibility of single atoms. Science 168, 1338–1340 (1970)

    ADS  Article  Google Scholar 

  5. 5

    Hashimoto, H. et al. Visualization of single atoms in molecules and crystals by dark field electron microscopy. J. Electron Microsc. (Tokyo) 22, 123–134 (1973)

    Google Scholar 

  6. 6

    Iijima, S. Observation of single and clusters of atoms in bright field electron microscopy. Optik 48, 193–213 (1977)

    Google Scholar 

  7. 7

    Nellist, P. D. & Pennycook, S. J. Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996)

    ADS  Article  Google Scholar 

  8. 8

    Voyles, P. M., Muller, D. A., Grazul, J. L., Citrin, P. H. & Gossmann, H.-J. L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk silicon. Nature 416, 826–829 (2002)

    ADS  Article  Google Scholar 

  9. 9

    van Benthem, K. et al. Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 034104 (2005)

    ADS  Article  Google Scholar 

  10. 10

    Doyle, P. A. & Turner, P. S. Relativistic Hartree-Fock x-ray and electron scattering factors. Acta Crystallogr. A 24, 390–397 (1968)

    ADS  Article  Google Scholar 

  11. 11

    Kisielowski, C. et al. Imaging columns of the light elements carbon, nitrogen and oxygen with sub Angstrom resolution. Ultramicroscopy 89, 243–263 (2001)

    Article  Google Scholar 

  12. 12

    Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003)

    ADS  Article  Google Scholar 

  13. 13

    Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C in carbon nanotubes. Nature 396, 323–324 (1998)

    Article  Google Scholar 

  14. 14

    Liu, Z. et al. Transmission electron microscopy imaging of individual functional groups of fullerene derivatives. Phys. Rev. Lett. 96, 088304 (2006)

    ADS  Article  Google Scholar 

  15. 15

    Lui, Z., Yanagi, K., Suenaga, K., Kataura, H. & Iijima, S. Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nature Nanotechnol. 2, 422–425 (2007)

    ADS  Article  Google Scholar 

  16. 16

    Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004)

    ADS  Article  Google Scholar 

  17. 17

    Suenaga, K. et al. Imaging active topological defects in carbon nanotubes. Nature Nanotechnol. 2, 358–360 (2007)

    ADS  Article  Google Scholar 

  18. 18

    Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    ADS  Article  Google Scholar 

  19. 19

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005)

    ADS  Article  Google Scholar 

  20. 20

    Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    ADS  Article  Google Scholar 

  21. 21

    Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    ADS  Article  Google Scholar 

  22. 22

    Vainshtein, B. K. & Pinsker, Z. G. Opredelenie Polozheniya Vodoroda V Kristallicheskoi Reshetke Parafina. Dokl. Akad. Nauk SSSR 72, 53–56 (1950)

    Google Scholar 

  23. 23

    Amara, H., Latil, S., Lambin, Ph. & Charlier, J.-C. Scanning tunneling microscopy fingerprints of point defects in graphene: A theoretical prediction. Phys. Rev. B 76, 115423 (2007)

    ADS  Article  Google Scholar 

  24. 24

    Smith, B. W. & Luzzi, E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509–3515 (2001)

    ADS  Article  Google Scholar 

  25. 25

    Jeloaica, L. & Sidis, V. DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface. Chem. Phys. Lett. 300, 157–162 (1999)

    ADS  Article  Google Scholar 

  26. 26

    Sha, X. & Jackson, B. First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface. Surf. Sci. 496, 318–330 (2002)

    ADS  Article  Google Scholar 

  27. 27

    Hornekaer, L. et al. Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett. 96, 156104 (2006)

    ADS  Article  Google Scholar 

  28. 28

    Boukhvalov, D. W., Katsnelson, M. I. & Lichtenstein, A. I. Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 77, 035427 (2007)

    ADS  Article  Google Scholar 

  29. 29

    Ito, A., Nakamura, H. & Takayama, A. Chemical reaction between single hydrogen atom and graphene. Preprint at 〈〉 2007.

  30. 30

    Nordlund, K., Keinonen, J. & Mattila, T. Formation of ion irradiation induced small-scale defects on graphite surfaces. Phys. Rev. Lett. 77, 699–702 (1996)

    ADS  Article  Google Scholar 

Download references


This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under contract DE-AC02-05CH11231. A.Z. acknowledges support from the Miller Institute of Basic Research in Science, and C.O.G. acknowledges support from an NSF Graduate Fellowship.

Author information



Corresponding authors

Correspondence to Jannik C. Meyer or A. Zettl.

Supplementary information

Supplementary information

The file contains Supplementary Methods, Supplementary Figures S1-S3 and Supplementary Discussion: (PDF 1150 kb)

Supplementary information

The file contains Supplementary Movie 1 showing dynamics of a linear molecule on a graphene membrane as in Figs. 4b-d of the main article. Horizontal field of view in the video is 10 nm. (MOV 243 kb)

Supplementary information

The file contains Supplementary Movie 2 showing dynamics of a carbon chain attached between larger adsorbates. Horizontal field of view is 14 nm. (MOV 2484 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meyer, J., Girit, C., Crommie, M. et al. Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319–322 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.