Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs


In contrast to microRNAs and Piwi-associated RNAs, short interfering RNAs (siRNAs) are seemingly dispensable for host-directed gene regulation in Drosophila. This notion is based on the fact that mutants lacking the core siRNA-generating enzyme Dicer-2 or the predominant siRNA effector Argonaute 2 are viable, fertile and of relatively normal morphology1,2. Moreover, endogenous Drosophila siRNAs have not yet been identified. Here we report that siRNAs derived from long hairpin RNA genes (hpRNAs) programme Slicer complexes that can repress endogenous target transcripts. The Drosophila hpRNA pathway is a hybrid mechanism that combines canonical RNA interference factors (Dicer-2, Hen1 (known as CG12367) and Argonaute 2) with a canonical microRNA factor (Loquacious) to generate 21-nucleotide siRNAs. These novel regulatory RNAs reveal unexpected complexity in the sorting of small RNAs, and open a window onto the biological usage of endogenous RNA interference in Drosophila.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of Drosophila hpRNA transcripts.
Figure 2: Distinct biogenesis pathways for miRNAs and hpRNAs.
Figure 3: hpRNAs generate regulatory RNAs that can repress endogenous targets.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The imaginal disc/brain sample described in paper has been deposited in the NCBI GEO under accession number GSM275691.


  1. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004)

    Article  CAS  Google Scholar 

  2. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004)

    Article  CAS  Google Scholar 

  3. Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898 (2000)

    Article  CAS  Google Scholar 

  4. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000)

    Article  CAS  Google Scholar 

  5. Wilson, R. J., Goodman, J. L. & Strelets, V. B. FlyBase: integration and improvements to query tools. Nucleic Acids Res. 36, D588–D593 (2008)

    Article  CAS  Google Scholar 

  6. Tupy, J. L. et al. Identification of putative noncoding polyadenylated transcripts in Drosophila melanogaster . Proc. Natl Acad. Sci. USA 102, 5495–5500 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53 (2006)

    Article  CAS  Google Scholar 

  8. Liu, X. et al. Dicer-1, but not Loquacious, is critical for assembly of miRNA-induced silencing complexes. RNA 13, 2324–2329 (2007)

    Article  CAS  Google Scholar 

  9. Leuschner, P. J., Ameres, S. L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320 (2006)

    Article  CAS  Google Scholar 

  10. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005)

    Article  CAS  Google Scholar 

  11. Diederichs, S. & Haber, D. A. Dual role for Argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108 (2007)

    Article  CAS  Google Scholar 

  12. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001)

    Article  CAS  Google Scholar 

  13. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev. 21, 1603–1608 (2007)

    Article  CAS  Google Scholar 

  15. Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272 (2007)

    Article  CAS  Google Scholar 

  16. Seitz, H., Ghildiyal, M. & Zamore, P. D. Argonaute loading improves the 5′ precision of both microRNAs and their miRNA strands in flies. Curr. Biol. 18, 147–151 (2008)

    Article  CAS  Google Scholar 

  17. Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell 130, 287–297 (2007)

    Article  Google Scholar 

  18. Harris, P. V. et al. Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Mol. Cell. Biol. 16, 5764–5771 (1996)

    Article  CAS  Google Scholar 

  19. Dunoyer, P., Himber, C. & Voinnet, O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nature Genet. 37, 1356–1360 (2005)

    Article  CAS  Google Scholar 

  20. Rajagopalan, R., Vaucheret, H., Trejo, J. & Bartel, D. P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana . Genes Dev. 20, 3407–3425 (2006)

    Article  CAS  Google Scholar 

  21. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002)

    Article  CAS  Google Scholar 

  22. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 10.1126/science.1157396; published online 10 April 2008

  23. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila . Nature 10.1038/nature07007 (this issue)

  24. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 10.1038/nature06938 (this issue)

  25. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila . Cell 130, 89–100 (2007)

    Article  CAS  Google Scholar 

  26. Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol. 1, E60 (2003)

    Article  Google Scholar 

  27. Ruby, J. G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 17, 1850–1864 (2007)

    Article  CAS  Google Scholar 

  28. Karolchik, D. et al. The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res. 36, D773–D779 (2008)

    Article  CAS  Google Scholar 

  29. Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005)

    Article  Google Scholar 

  30. Park, J. K., Liu, X., Strauss, T. J., McKearin, D. M. & Liu, Q. The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells. Curr. Biol. 17, 533–538 (2007)

    Article  CAS  Google Scholar 

Download references


We are grateful to R. Carthew, Q. Liu, H. Siomi and S. Cohen for plasmids and Drosophila strains. K.O. was supported by the Charles H. Revson Foundation. H.G. was supported by A*STAR, Singapore. D.P.B. is an HHMI investigator, and work in his laboratory was supported by a grant from the NIH (GM067031). E.C.L. was supported by grants from the Leukemia and Lymphoma Foundation, the Burroughs Wellcome Foundation, the V Foundation for Cancer Research, the Sidney Kimmel Foundation for Cancer Research, and the NIH (GM083300).

Author Contributions J.G.R. identified hp-CG4068 and hpRNA1. W.-J.C. performed the EINVERTED analysis and identified the additional hpRNA loci and their targets. H.G. performed initial hpRNA northern analysis; all other experiments were designed and carried out by K.O. All authors contributed to the preparation of the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eric C. Lai.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures S1-S13 with Legends. (PDF 2913 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Okamura, K., Chung, WJ., Ruby, J. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453, 803–806 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing