An extremely luminous X-ray outburst at the birth of a supernova

Article metrics

  • A Corrigendum to this article was published on 10 July 2008

Abstract

Massive stars end their short lives in spectacular explosions—supernovae—that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their ‘delayed’ optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the ‘break-out’ of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Discovery image and X-ray light curve of XRO 080109/SN 2008D.
Figure 2: Optical spectra of XRO 080109/SN 2008D, and model fit.
Figure 3: Optical and ultraviolet light curves of XRO 080109/SN 2008D, and model fit.
Figure 4: Radio light curves, spectra and image of XRO 080109/SN 2008D.
Figure 5: Volumetric rate of X-ray outbursts similar to XRO 080109.

References

  1. 1

    Woosley, S. E. & Weaver, T. A. The physics of supernova explosions. Annu. Rev. Astron. Astrophys. 24, 205–253 (1986)

  2. 2

    Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997)

  3. 3

    Arnett, W. D., Bahcall, J. N., Kirshner, R. P. & Woosley, S. E. Supernova 1987A. Annu. Rev. Astron. Astrophys. 27, 629–700 (1989)

  4. 4

    Colgate, S. A. Early gamma rays from supernovae. Astrophys. J. 187, 333–336 (1974)

  5. 5

    Klein, R. I. & Chevalier, R. A. X-ray bursts from Type II supernovae. Astrophys. J. 223, L109–L112 (1978)

  6. 6

    Waxman, E., Mészáros, P. & Campana, S. GRB 060218: A relativistic supernova shock breakout. Astrophys. J. 667, 351–357 (2007)

  7. 7

    Cappa, C., Goss, W. M. & van der Hucht, K. A. A Very Large Array 3.6 centimeter continuum survey of galactic Wolf-Rayet stars. Astrophys. J. 127, 2885–2897 (2004)

  8. 8

    Woosley, S. E., Hegar, A. & Weaver, T. A. The evolution and explosion of massive stars. Astrophys. J. 74, 1015–1071 (2002)

  9. 9

    MacFadyen, A. I., Woosley, S. E. & Hegar, A. Supernovae, jets, and collapsars. Astrophys. J. 550, 410–425 (2001)

  10. 10

    Soderberg, A. M. et al. The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425. Nature 430, 648–650 (2004)

  11. 11

    Page, K. L. et al. Observations of an X-ray transient in NGC 2770. GCN Rep. 110 (2008)

  12. 12

    Deng, J. & Zhu, Y. Bright X-ray transient (a XRF?) in NGC 2770 - a SN optical counterpart? GCN Circ. 7160 (2008)

  13. 13

    Valenti, S., Turatto, M., Navasardyan, H., Benetti, S. & Cappellaro, E. Early OT detection of XRF in NGC 2770 in asiago frames. GCN Circ. 7163 (2008)

  14. 14

    Malesani, D. et al. Transient in NGC 2770: Spectroscopic evidence for a SN. GCN Circ. 7169 (2008)

  15. 15

    Li, W. & Filippenko, A. V. Supernova 2008D in NGC 2770. Cent. Bur. Electron. Telegr. 1202 (2008)

  16. 16

    Modjaz, M. et al. Supernova 2008D in NGC 2770. Cent. Bur. Electron. Telegr. 1222 (2008)

  17. 17

    Pian, E. et al. An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006)

  18. 18

    Campana, S. et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442, 1008–1010 (2006)

  19. 19

    Soderberg, A. M. et al. An HST study of the supernovae accompanying GRB 040924 and GRB 041006. Astrophys. J. 636, 391–399 (2006)

  20. 20

    Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. 497, 17–20 (1998)

  21. 21

    Waxman, E. & Loeb, A. TeV neutrinos and GeV photons from shock breakout in supernovae. Phys. Rev. Lett. 87, 071101 (2001)

  22. 22

    Wang, X.-Y., Li, Z., Waxman, E. & Mészáros, P. Nonthermal gamma-ray/X-ray flashes from shock breakout in gamma-ray burst-associated supernovae. Astrophys. J. 664, 1026–1032 (2007)

  23. 23

    Moffat, A. F. J., Drissen, L. & Robert, C. in Physics of Luminous Blue Variables (eds Davidson, K., Moffat, A. F. J. & Lamers, H. J. G. L. M.) 229–237 (IAU Colloq. 113, Kluwer Academic, Dordrecht, 1989)

  24. 24

    Matzner, C. D. & McKee, C. F. The expulsion of stellar envelopes in core-collapse supernovae. Astrophys. J. 510, 379–403 (1999)

  25. 25

    Valenti, S. et al. The broad-lined Type Ic supernova 2003jd. Mon. Not. R. Astron. Soc. 383, 1485–1500 (2008)

  26. 26

    Arnett, W. D. Type I supernovae. I – Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982)

  27. 27

    Soderberg, A. M. et al. The radio and X-ray-luminous Type Ibc supernova 2003L. Astrophys. J. 621, 908–920 (2005)

  28. 28

    Berger, E., Kulkarni, S. R. & Frail, D. A. A standard kinetic energy reservoir in gamma-ray burst afterglows. Astrophys. J. 590, 379–385 (2003)

  29. 29

    Frail, D. A., Kulkarni, S. R., Berger, E. & Wieringa, M. H. A complete catalog of radio afterglows: The first five years. Astron. J. 125, 2299–2306 (2003)

  30. 30

    Berger, E., Kulkarni, S. R., Frail, D. A. & Soderberg, A. M. A radio survey of Type Ib and Ic supernovae: Searching for engine-driven supernovae. Astrophys. J. 599, 408–418 (2003)

  31. 31

    Kouveliotou, C. et al. Chandra observations of the X-ray environs of SN 1998bw/GRB 980425. Astrophys. J. 608, 872–882 (2004)

  32. 32

    Chevalier, R. A. Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982)

  33. 33

    Readhead, A. C. S. Equipartition brightness temperature and the inverse Compton catastrophe. Astrophys. J. 426, 51–59 (1994)

  34. 34

    Kulkarni, S. R. et al. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998)

  35. 35

    Waxman, E. The nature of GRB 980425 and the search for off-axis gamma-ray burst signatures in nearby Type Ib/c supernova emission. Astrophys. J. 602, 886–891 (2004)

  36. 36

    Soderberg, A. M., Nakar, E., Berger, E. & Kulkarni, S. R. Late-time radio observations of 68 Type Ibc supernovae: Strong constraints on off-axis gamma-ray bursts. Astrophys. J. 638, 930–937 (2006)

  37. 37

    Blanton, M. R. et al. The galaxy luminosity function and luminosity density at redshift z = 0.1. Astrophys. J. 592, 819–838 (2003)

  38. 38

    Schmidt, M. Luminosity function of gamma-ray bursts derived without benefit of redshifts. Astrophys. J. 552, 36–41 (2001)

  39. 39

    Soderberg, A. M. et al. Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442, 1014–1017 (2006)

  40. 40

    Cappellaro, E., Evans, R. & Turatto, M. A new determination of supernova rates and a comparison with indicators for galactic star formation. 351, 459–466 (1999)

  41. 41

    Band, D. L. Postlaunch analysis of Swift's gamma-ray burst detection sensitivity. Astrophys. J. 644, 378–384 (2006)

  42. 42

    Dahlen, T. et al. High-redshift supernova rates. Astrophys. J. 613, 189–199 (2004)

  43. 43

    Lonsdale, C. J., Diamond, P. J., Thrall, H., Smith, H. E. & Lonsdale, C. J. VLBI images of 49 radio supernovae in Arp 220. Astrophys. J. 647, 185–193 (2006)

  44. 44

    Fynbo, J. P. U., Malesani, D., Augusteijn, T. & Niemi, S.-M. NGC 2770B has the same redshift as NGC 2770. GCN Circ. 7186 (2008)

Download references

Acknowledgements

This Article is based in part on observations obtained at the Gemini Observatory through the Director’s Discretionary Time. Gemini is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (US), the STFC (UK), the NRC (Canada), CONICYT (Chile), the ARC (Australia), CNPq (Brazil) and SECYT (Argentina). The VLA is operated by NRAO, a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA. The Observatory was made possible by the financial support of the W. M. Keck Foundation. A.M.S. acknowledges support by NASA through a Hubble Fellowship.

Author information

Correspondence to A. M. Soderberg.

Supplementary information

Supplementary information

The file contains Supplementary Data, Supplementary Tables 1-6 and Supplementary Figures 1-9 with Legends. (PDF 1170 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.