Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Why fishing magnifies fluctuations in fish abundance

Abstract

It is now clear that fished populations can fluctuate more than unharvested stocks. However, it is not clear why. Here we distinguish among three major competing mechanisms for this phenomenon, by using the 50-year California Cooperative Oceanic Fisheries Investigations (CalCOFI) larval fish record. First, variable fishing pressure directly increases variability in exploited populations. Second, commercial fishing can decrease the average body size and age of a stock, causing the truncated population to track environmental fluctuations directly. Third, age-truncated or juvenescent populations have increasingly unstable population dynamics because of changing demographic parameters such as intrinsic growth rates. We find no evidence for the first hypothesis, limited evidence for the second and strong evidence for the third. Therefore, in California Current fisheries, increased temporal variability in the population does not arise from variable exploitation, nor does it reflect direct environmental tracking. More fundamentally, it arises from increased instability in dynamics. This finding has implications for resource management as an empirical example of how selective harvesting can alter the basic dynamics of exploited populations, and lead to unstable booms and busts that can precede systematic declines in stock levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In addition to an increased coefficient of variation 9 , exploited species (red dots) exhibit larger booms and busts than unexploited species (blue triangles) of a similar age.
Figure 2: Hypothesis 1: does variable fishing cause variability in fish stocks?
Figure 3: Discriminating between hypotheses 2 and 3.
Figure 4: Nonlinear behaviour can emerge at modest growth rates ( r ) with process noise ( εprocess).
Figure 5

Similar content being viewed by others

References

  1. Beddington, J. R. & May, R. M. Harvesting natural populations in a randomly fluctuating environment. Science 197, 463–465 (1977)

    Article  CAS  ADS  Google Scholar 

  2. May, R. M., Beddington, J. R., Horwood, J. W. & Shepherd, J. G. Exploiting natural populations in an uncertain world. Math. Biosci. 42, 219–252 (1978)

    Article  MathSciNet  Google Scholar 

  3. Lande, R., Engen, S. & Saether, B. Stochastic Population Dynamics in Ecology and Conservation (Oxford Univ. Press, New York, 2003)

    Book  Google Scholar 

  4. Murphy, G. I. Vital statistics of the Pacific sardine (Sardinops caerulea) and the population consequences. Ecology 48, 731–736 (1967)

    Article  Google Scholar 

  5. Murphy, G. I. Population biology of the Pacific sardine (Sardine caerulea). Proc. Calif. Acad. Sci. 4th ser. 34, 1–84 (1966)

    Google Scholar 

  6. Marr, J. C. in Proc. World Sci. Meeting Biol. Sardines Related Species (eds Rosa, H. & Murphy, G.) 667–791 (FAO, Rome, 1960)

    Google Scholar 

  7. Clark, F. N. & Marr, J. C. Population dynamics of the Pacific sardine. CalCOFI Prog. Rep. 4, 11–48 (1955)

    Google Scholar 

  8. Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl Acad. Sci. USA 105, 1965–1970 (2008)

    Article  CAS  ADS  Google Scholar 

  9. Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006)

    Article  CAS  ADS  Google Scholar 

  10. Hunter, J. R. & Lo, N. C. H. Ichthyoplankton methods for estimating fish biomass introduction and terminology. Bull. Mar. Sci. 53, 723–727 (1993)

    Google Scholar 

  11. Gunderson, D. R. Surveys of Fisheries Resources (John Wiley, New York, 1993)

    Google Scholar 

  12. Hsieh, C. H. et al. A comparison of long-term trends and variability in populations of larvae of exploited and unexploited fishes in the southern California region: a community approach. Prog. Oceanogr. 67, 160–185 (2005)

    Article  ADS  Google Scholar 

  13. Murphy, G. I. Pattern in life history and the environment. Am. Nat. 102, 391–403 (1968)

    Article  Google Scholar 

  14. Hutchings, J. A. & Reynolds, J. D. Marine fish population collapses: consequences for recovery and extinction risk. BioScience 13, 297–309 (2004)

    Article  Google Scholar 

  15. Hutchings, J. & Baum, J. Measuring marine fishes biodiversity: temporal changes in abundance, life history and demography. Phil. Trans. R. Soc. B 360, 315–338 (2005)

    Article  Google Scholar 

  16. Longhurst, A. The sustainability myth. Fish. Res. 81, 107–112 (2006)

    Article  Google Scholar 

  17. Hsieh, C. H., Reiss, S. C., Hewitt, R. P. & Sugihara, G. Spatial analysis shows fishing enhances the climatic sensitivity of marine fishes. Can. J. Fish. Aquat. Sci. (in the press)

  18. Berkeley, S. A., Hixon, M. A., Larson, R. J. & Love, M. S. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29, 23–32 (2004)

    Article  Google Scholar 

  19. Jonzen, N., Ripa, J. & Lundberg, P. A theory of stochastic harvesting in stochastic environments. Am. Nat. 159, 427–437 (2002)

    Article  Google Scholar 

  20. Dixon, P. A., Milicich, M. J. & Sugihara, G. Episodic fluctuations in larval supply. Science 283, 1528–1530 (1999)

    Article  CAS  ADS  Google Scholar 

  21. Hsieh, C. H., Glaser, S. M., Lucas, A. J. & Sugihara, G. Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature 435, 336–340 (2005)

    Article  CAS  ADS  Google Scholar 

  22. Jonzen, N., Lundberg, P., Cardinale, M. & Arrhenius, F. Variable fishing mortality and the possible commercial extinction of the eastern Baltic cod. Mar. Ecol. Prog. Ser. 210, 291–296 (2001)

    Article  ADS  Google Scholar 

  23. Jorgensen, C. et al. Managing evolving fish stocks. Science 318, 1247–1248 (2007)

    Article  CAS  Google Scholar 

  24. Lambert, T. C. Duration and intensity of spawning in herring Clupea harengus as related to the age structure of the population. Mar. Ecol. Prog. Ser. 39, 209–220 (1987)

    Article  ADS  Google Scholar 

  25. Marteinsdottir, G. & Steinarsson, A. Maternal influence on the size and viability of Iceland cod (Gadus morhua) eggs and larvae. J. Fish Biol. 52, 1241–1258 (1998)

    Google Scholar 

  26. Hutchings, J. A. & Myers, R. A. Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 50, 2468–2474 (1993)

    Article  Google Scholar 

  27. Bobko, S. J. & Berkeley, S. A. Maturity, ovarian cycle, fecundity, and age-specific parturition of black rockfish (Sebastes melanops). Fish. Bull. 102, 418–429 (2004)

    Google Scholar 

  28. Steele, J. H. & Henderson, E. W. Modeling long-term fluctuations in fish stocks. Science 224, 985–987 (1984)

    Article  CAS  ADS  Google Scholar 

  29. Sugihara, G. Nonlinear forecasting for the classification of natural time series. Phil. Trans. R. Soc. Lond. A 348, 477–495 (1994)

    Article  ADS  Google Scholar 

  30. Sugihara, G., Grenfell, B. & May, R. M. Distinguishing error from chaos in ecological time series. Phil. Trans. R. Soc. Lond. B 330, 235–250 (1990)

    Article  CAS  ADS  Google Scholar 

  31. Sugihara, G. et al. Residual delay maps unveil global patterns of atmospheric nonlinearity and produce improved local forecasts. Proc. Natl Acad. Sci. USA 96, 14210–14215 (1999)

    Article  CAS  ADS  Google Scholar 

  32. Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Chapman and Hall, New York, 1992)

    Book  Google Scholar 

  33. Halley, J. M. Ecology, evolution and 1/f-noise. Trends Ecol. Evol. 11, 33–37 (1996)

    Article  CAS  Google Scholar 

  34. Steele, J. H. A comparison of terrestrial and marine ecological systems. Nature 313, 355–358 (1985)

    Article  ADS  Google Scholar 

  35. Vasseur, D. A. & Yodzis, P. The color of environmental noise. Ecology 85, 1146–1152 (2004)

    Article  Google Scholar 

  36. Conover, D. O. & Munch, S. B. Sustaining fisheries yields over evolutionary time scales. Science 297, 94–96 (2002)

    Article  CAS  ADS  Google Scholar 

  37. Kuparinen, A. & Merila, J. Detecting and managing fisheries-induced evolution. Trends Ecol. Evol. 22, 652–659 (2007)

    Article  Google Scholar 

  38. May, R. M. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974)

    Article  CAS  ADS  Google Scholar 

  39. Hastings, A. & Powell, T. Chaos in a three-species food chain. Ecology 72, 869–903 (1991)

    Article  Google Scholar 

  40. Ricker, W. E. Changes in the average size and average age of Pacific salmon. Can. J. Fish. Aquat. Sci. 38, 1636–1656 (1981)

    Article  Google Scholar 

  41. Harvey, C. J., Tolimieri, N. & Levin, P. S. Changes in body size, abundance, and energy allocation in rockfish assemblages of the northeast Pacific. Ecol. Appl. 16, 1502–1515 (2006)

    Article  Google Scholar 

  42. Armstrong, M., Dann, J. & Sullivan, K. Programme 1: North East Cod. Fisheries Science Partnership 2006/07 Final Report (Cefas, Lowestoft, 2006)

    Google Scholar 

  43. Poulsen, R. T., Cooper, A. B., Holm, P. & MacKenzie, B. R. An abundance estimate of ling (Molva molva) and cod (Gadus morhua) in the Skagerrak and the northeastern North Sea, 1872. Fish. Res. 87, 196–207 (2007)

    Article  Google Scholar 

  44. ICCAT. Standing Committee on Research and Statistics (ICCAT-SCRS) Stock Status Report – Swordfish – North Atlantic 2006 (FAO, Rome, 2006)

  45. Murawski, S. A., Rago, P. J. & Trippel, E. A. Impacts of demographic variation in spawning characteristics on reference points for fishery management. ICES J. Mar. Sci. 58, 1002–1014 (2001)

    Article  Google Scholar 

  46. Stefansson, G. & Rosenberg, A. A. Combining control measures for more effective management of fisheries under uncertainty: quotas, effort limitation and protected areas. Phil. Trans. R. Soc. B 360, 133–146 (2005)

    Article  Google Scholar 

  47. Spencer, P. D., Hanselman, D. & Dorn, M. in Biology, Assessment, and Management of North Pacific Rockfishes. Univ. Alaska Sea Grant Program Report No. AK-SG-07–01 (eds Heifetz, J. et al.) 513–533 (Univ. Alaska Fairbanks, Fairbanks, Alaska, 2007)

    Book  Google Scholar 

  48. Anonymous Alaska Groundfish Fisheries Final Programmatic Supplemental Environmental Impact Statement (US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Region, Juneau, Alaska, 2004)

    Google Scholar 

  49. Sibert, J., Hampton, J., Kleiber, P. & Maunder, M. Biomass, size, and trophic status of top predators in the Pacific Ocean. Science 314, 1773–1776 (2006)

    Article  CAS  ADS  Google Scholar 

  50. Hsieh, C. H., Anderson, C. & Sugihara, G. Extending nonlinear analysis to short ecological time series. Am. Nat. 171, 71–80 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from National Oceanic and Atmospheric Administration Fisheries and the Environment, the McQuown Chair Endowment in Natural Science, the Deutsche Bank – Jameson Complexity Studies Fund, the Sugihara Family Trust, National Science Council-Long-term Observation Research of the East China Sea, the Center for Marine Bioscience and Biotechnology, and a grant for Biodiversity Research of the 21st Century Center of Excellence at Kyoto University. M. Maunder, P. Hull, V. Dakos, S. Carpenter, J. Bascompte, M. Scheffer, C. Folke, E. H. van Nes, B. Brock, J. Murray, N. Yamamura and H.-H. Lee provided comments.

Author Contributions G.S., C.N.K.A, C.-h.H., R.M.M. and J.B. helped to frame the original research to investigate hypothesis 3. C.-h.H. and G.S. performed the initial S-map analysis on the CalCOFI data that verified hypothesis 3. C.N.K.A., with assistance from C.-h.H. and G.S., did the model analyses, statistical tests and the documentation of life-history results. All co-authors assisted with the evolution of the research plan and the refinement and final exposition of ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Sugihara.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S6 with Legends, Supplementary Tables S1-S4, Supplementary Discussion commenting on the generality of results to fisheries models and additional references (PDF 523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, C., Hsieh, Ch., Sandin, S. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008). https://doi.org/10.1038/nature06851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06851

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing