Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Free choice activates a decision circuit between frontal and parietal cortex

Abstract

We often face alternatives that we are free to choose between. Planning movements to select an alternative involves several areas in frontal and parietal cortex1,2,3,4,5,6,7,8,9,10,11 that are anatomically connected into long-range circuits12. These areas must coordinate their activity to select a common movement goal, but how neural circuits make decisions remains poorly understood. Here we simultaneously record from the dorsal premotor area (PMd) in frontal cortex and the parietal reach region (PRR) in parietal cortex to investigate neural circuit mechanisms for decision making. We find that correlations in spike and local field potential (LFP) activity between these areas are greater when monkeys are freely making choices than when they are following instructions. We propose that a decision circuit featuring a sub-population of cells in frontal and parietal cortex may exchange information to coordinate activity between these areas. Cells participating in this decision circuit may influence movement choices by providing a common bias to the selection of movement goals.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Task and behaviour.
Figure 2: PMd–PRR spike–field coherence.
Figure 3: Spike response latencies.
Figure 4: Receiver-operating characteristic choice probability estimated from the firing rate for neurons with and without significant PMd–PRR spike–field coherence.

References

  1. 1

    Romo, R. & Schultz, W. Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex. Exp. Brain Res. 67, 656–662 (1987)

    CAS  Article  Google Scholar 

  2. 2

    Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P. & Andersen, R. A. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature Neurosci. 5, 805–811 (2002)

    CAS  Article  Google Scholar 

  5. 5

    Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Cisek, P. & Kalaska, J. F. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45, 801–814 (2005)

    CAS  Article  Google Scholar 

  7. 7

    Gail, A. & Andersen, R. A. Neural dynamics in monkey parietal reach region reflect context-specific sensorimotor transformations. J. Neurosci. 26, 9376–9384 (2006)

    CAS  Article  Google Scholar 

  8. 8

    Pesaran, B., Nelson, M. J. & Andersen, R. A. Dorsal premotor neurons encode the relative position of the hand, eye, and goal during reach planning. Neuron 51, 125–134 (2006)

    CAS  Article  Google Scholar 

  9. 9

    Quian Quiroga, R., Snyder, L. H., Batista, A. P., Cui, H. & Andersen, R. A. Movement intention is better predicted than attention in the posterior parietal cortex. J. Neurosci. 26, 3615–3620 (2006)

    Article  Google Scholar 

  10. 10

    Scherberger, H. & Andersen, R. A. Target selection signals for arm reaching in the posterior parietal cortex. J. Neurosci. 27, 2001–2012 (2007)

    CAS  Article  Google Scholar 

  11. 11

    Yang, T. & Shadlen, M. N. Probabilistic reasoning by neurons. Nature 447, 1075–1080 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Johnson, P. B., Ferraina, S., Bianchi, L. & Caminiti, R. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb. Cortex 6, 102–119 (1996)

    CAS  Article  Google Scholar 

  13. 13

    Kreps, D. M. A Course in Microeconomic Theory Ch. 2 (Princeton Univ. Press, Princeton, 1990)

    Google Scholar 

  14. 14

    Wise, S. P., Boussaoud, D., Johnson, P. B. & Caminiti, R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu. Rev. Neurosci. 20, 25–42 (1997)

    CAS  Article  Google Scholar 

  15. 15

    Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65, 37–100 (1985)

    CAS  Article  Google Scholar 

  16. 16

    Halliday, D. M. et al. A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog. Biophys. Mol. Biol. 64, 237–278 (1995)

    CAS  Article  Google Scholar 

  17. 17

    Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J. D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006)

    Article  Google Scholar 

  18. 18

    Goldberg, G. Supplementary motor area structure and function: review and hypotheses. Behav. Brain Sci. 8, 567–616 (1985)

    Article  Google Scholar 

  19. 19

    Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Daw, N. D. & Doya, K. The computational neurobiology of learning and reward. Curr. Opin. Neurobiol. 16, 199–204 (2006)

    CAS  Article  Google Scholar 

  21. 21

    Schmolesky, M. T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998)

    CAS  Article  Google Scholar 

  22. 22

    Cisek, P. Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26, 9761–9770 (2006)

    CAS  Article  Google Scholar 

  23. 23

    Bressler, S. L., Coppola, R. & Nakamura, R. Episodic multiregional cortical coherence at multiple frequencies during visual task-performance. Nature 366, 153–156 (1993)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Murthy, V. N. & Fetz, E. E. Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J. Neurophysiol. 76, 3968–3982 (1996)

    CAS  Article  Google Scholar 

  25. 25

    Riehle, A., Grun, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950–1953 (1997)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Scherberger, H., Jarvis, M. J. R. & Andersen, R. A. Cortical local field potential encodes movement intentions. Neuron 46, 347–354 (2005)

    CAS  Article  Google Scholar 

  27. 27

    Rickert, J. et al. Encoding of movement direction in different frequency ranges of motor cortical local field potentials. J. Neurosci. 25, 8815–8824 (2005)

    CAS  Article  Google Scholar 

  28. 28

    Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1862 (2007)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005)

    Article  Google Scholar 

  30. 30

    Mitra, P. P. & Pesaran, B. Analysis of dynamic brain imaging data. Biophys. J. 76, 691–708 (1999)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Eye Institute, the National Institute of Mental Health, the Defense Advanced Research Projects Agency BioInfoMicro program, a Career Award in the Biomedical Sciences from the Burroughs Wellcome Fund (B.P.), a James D. Watson Investigator Program Award from NYSTAR (B.P.) and a Sloan Research Fellowship (B.P.). We thank: N. Daw, H. Dean and D. Heeger for comments; T. Yao for editorial assistance; K. Pejsa and N. Sammons for animal care; and V. Shcherbatyuk and M. Walsh for technical assistance.

Author Contributions B.P., M.J.N. and R.A.A. designed the experiment and wrote the paper. B.P. and M.J.N. collected the data. B.P. performed the data analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bijan Pesaran.

Supplementary information

Supplementary information

The file contains Supplementary Methods; Supplementary Results; Supplementary Discussion; Supplementary References; Supplementary Figures 1-10 and Legends and Supplementary Tables 1-2 (PDF 2997 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pesaran, B., Nelson, M. & Andersen, R. Free choice activates a decision circuit between frontal and parietal cortex. Nature 453, 406–409 (2008). https://doi.org/10.1038/nature06849

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing