Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Absolute plate motions and true polar wander in the absence of hotspot tracks


The motion of continents relative to the Earth’s spin axis may be due either to rotation of the entire Earth relative to its spin axis—true polar wander1,2—or to the motion of individual plates3. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time4 in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find 18° anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20° W, 0° N, near the site that became the North American–South American–African triple junction at the break-up of Pangaea. This was followed by 10° clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases 25-50° E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure5,6. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Coordinate system in which the mean motion (rotation) of continents is described.
Figure 2: Cumulative rotation and north–south motion averaged for all continents.
Figure 3: Motions of continents reconstructed in the palaeomagnetic reference frame during four time intervals.
Figure 4: Mean rotation of North America, Europe, Africa, South America and India-Pakistan since 250 Myr ago, based on palaeomagnetic declinations.


  1. 1

    Gold, T. Instability of the Earth’s axis of rotation. Nature 175, 526–529 (1955)

    ADS  Article  Google Scholar 

  2. 2

    Goldreich, P. & Toomre, A. Some remarks on polar wandering. J. Geophys. Res. 74, 2555–2569 (1969)

    ADS  Article  Google Scholar 

  3. 3

    Wegener, A. The origin of the continents. J. Geodyn. 32, 29–63 (2001); Die Entstehung der Kontinente. Petermanns Geographische Mitteilungen 58(I), 185–195; 253–256; 305–309 (1912)

    Article  Google Scholar 

  4. 4

    Jurdy, D. M. & Van Der Voo, R. True polar wander since the Early Cretaceous. Science 187, 1193–1196 (1975)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Evans, D. A. D. True polar wander and supercontinents. Tectonophysics 362, 303–320 (2003)

    ADS  Article  Google Scholar 

  6. 6

    Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006)

    ADS  Article  Google Scholar 

  7. 7

    Kirschvink, J. L., Ripperdan, R. L. & Evans, D. A. Evidence for a large-scale reorganization of Early Cambrian continental landmasses by inertial interchange true polar wander. Science 277, 541–545 (1997)

    CAS  Article  Google Scholar 

  8. 8

    Mound, J. E., Mitrovica, J. X. & Milne, G. A. Sea-level change and true polar wander during the Late Cretaceous. Geophys. Res. Lett. 28, 2057–2060 (2001)

    ADS  Article  Google Scholar 

  9. 9

    Torsvik, T. H., Van der Voo, R. & Redfield, T. F. Relative hotspot motions versus true polar wander. Earth Planet. Sci. Lett. 202, 185–200 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Maloof, A. C. et al. Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard. Geol. Soc. Am. Bull. 118, 1099–1124 (2006)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Steinberger, B. & O’Connell, R. J. Changes of the Earth’s rotation axis owing to advection of mantle density heterogeneities. Nature 387, 169–173 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Steinberger, B. & O’Connell, R. J. in Ice Sheets, Sea Level and the Dynamic Earth (eds Mitrovica, J. X. & Vermeersen, L. L. A.) 233–256 (Geodynamics Series vol. 29, AGU, Washington DC, 2002)

    Google Scholar 

  13. 13

    Tsai, V. C. & Stevenson, D. J. Theoretical constraints on true polar wander. J. Geophys. Res. 112 B05415 10.1029/2005JB003923 (2007)

    ADS  Article  Google Scholar 

  14. 14

    Torsvik, T. H. & Cocks, L. R. M. Earth geography from 400 to 250 million years: A palaeomagnetic, faunal and facies review. J. Geol. Soc. Lond. 161, 555–572 (2004)

    Article  Google Scholar 

  15. 15

    Wilson, J. T. A possible origin of the Hawaiian Islands. Can. J. Phys. 41, 863–870 (1963)

    ADS  Article  Google Scholar 

  16. 16

    Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971)

    ADS  Article  Google Scholar 

  17. 17

    Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    O’Neill, C., Müller, D. & Steinberger, B. On the uncertainties in hotspot reconstructions, and the significance of moving hotspot reference frames. Geochem. Geophys. Geosyst. 6 Q04003 10.1029/2004GC000784 (2005)

    ADS  Article  Google Scholar 

  19. 19

    Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: Toward a unified model. Rev. Geophys. (in the press); preprint at 〈

  20. 20

    Marcano, M. C., Van der Voo, R. & Mac Niocaill, C. True polar wander during the Permo-Triassic. J. Geodyn. 28, 75–95 (1999)

    Article  Google Scholar 

  21. 21

    Besse, J. & Courtillot, V. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res. 107 2300 10.1029/2000JB000050 (2002)

    ADS  Article  Google Scholar 

  22. 22

    Hager, B. H. Subducted slabs and the geoid: Constraints on mantle rheology and flow. J. Geophys. Res. 89, 6003–6015 (1984)

    ADS  Article  Google Scholar 

  23. 23

    Richards, M. A. & Hager, B. H. Geoid anomalies in a dynamic Earth. J. Geophys. Res. 89, 5987–6002 (1984)

    ADS  Article  Google Scholar 

  24. 24

    McCarthy, D. Geophysical explanation for the disparity in spreading rates between the Northern and Southern hemispheres. J. Geophys. Res. 112 B03410 10.1029/2006JB004535 (2007)

    ADS  Article  Google Scholar 

  25. 25

    Wessel, P. & Smith, W. H. F. Free software helps map and display data. Eos 72, 441 (1991)

    ADS  Article  Google Scholar 

  26. 26

    Torsvik, T. H. & Smethurst, M. A. Plate tectonic modeling: Virtual reality with GMAP. Comput. Geosci. 25, 395–402 (1999)

    ADS  Article  Google Scholar 

  27. 27

    Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. 3 1003 10.1029/2001GC000168 (2002)

    ADS  Article  Google Scholar 

  28. 28

    Chang, T., Stock, J. & Molnar, P. The rotation group in plate tectonics and the representation of uncertainties of plate reconstructions. Geophys. J. Int. 101, 649–661 (1990)

    ADS  Article  Google Scholar 

  29. 29

    DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Current plate motions. Geophys. J. Int. 101, 425–478 (1990)

    ADS  Article  Google Scholar 

Download references


We thank C. Gaina and T. F. Redfield for comments on the manuscript, D. Evans for comments and suggestions, and NGU, NFR and Statoil for financial support.

Author information



Corresponding author

Correspondence to Bernhard Steinberger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steinberger, B., Torsvik, T. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing