A deadenylation negative feedback mechanism governs meiotic metaphase arrest

Abstract

In vertebrate oocytes, meiotic progression is driven by the sequential translational activation of maternal messenger RNAs stored in the cytoplasm. This activation is mainly induced by the cytoplasmic elongation of their poly(A) tails, which is mediated by the cytoplasmic polyadenylation element (CPE) present in their 3′ untranslated regions1,2. In Xenopus oocytes, sequential phase-specific translation of CPE-regulated mRNAs is required to activate the maturation-promoting factor, which in turn mediates entry into the two consecutive meiotic metaphases (MI and MII)3,4,5,6. Here we report a genome-wide functional screening to identify previously unknown mRNAs cytoplasmically polyadenylated at meiotic phase transitions. A significant fraction of transcripts containing, in addition to CPEs, (A + U)-rich element (ARE) sequences (characteristic of mRNAs regulated by deadenylation7) were identified. Among these is the mRNA encoding C3H-4, an ARE-binding protein that we find to accumulate in MI and the ablation of which induces meiotic arrest. Our results suggest that C3H-4 recruits the CCR4 deadenylase complex to ARE-containing mRNAs and this, in turn, causes shortening of poly(A) tails. We also show that the opposing activities of the CPEs and the AREs define the precise activation times of the mRNAs encoding the anaphase-promoting complex inhibitors Emi1 and Emi2 during distinct phases of the meiotic cycle. Taken together, our results show that an ‘early’ wave of cytoplasmic polyadenylation activates a negative feedback loop by activating the synthesis of C3H-4, which in turn would recruit the deadenylase complex to mRNAs containing both CPEs and AREs. This negative feedback loop is required to exit from metaphase into interkinesis and for meiotic progression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Polyadenylation-induced translation of C3H-4 mRNA is required to exit MI.
Figure 2: C3H-4 mediates ARE-dependent deadenylation in oocytes by recruiting the CCR4 deadenylase to the mRNAs.
Figure 3: The polyadenylation profile is defined by the CPE arrangement and the presence of AREs.
Figure 4: The polyadenylation of emi1 and emi2 , CPE- and ARE-containing mRNAs, is regulated by CPEB and C3H-4.

References

  1. 1

    Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. Nature Rev. Mol. Cell Biol. 2, 521–529 (2001)

    CAS  Article  Google Scholar 

  2. 2

    Richter, J. D. CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285 (2007)

    CAS  Article  Google Scholar 

  3. 3

    de Moor, C. H. & Richter, J. D. The Mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol. Cell. Biol. 17, 6419–6426 (1997)

    CAS  Article  Google Scholar 

  4. 4

    Ballantyne, S., Daniel, D. L. & Wickens, M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell 8, 1633–1648 (1997)

    CAS  Article  Google Scholar 

  5. 5

    Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Mendez, R., Barnard, D. & Richter, J. D. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 21, 1833–1844 (2002)

    CAS  Article  Google Scholar 

  7. 7

    Voeltz, G. K. & Steitz, J. A. AUUUA sequences direct mRNA deadenylation uncoupled from decay during Xenopus early development. Mol. Cell. Biol. 18, 7537–7545 (1998)

    CAS  Article  Google Scholar 

  8. 8

    Piqué, M., López, J. M., Foissac, S., Guigó, R. & Méndez, R. A combinatorial code for CPE-mediated translational control. Cell 132, 434–448 (2008)

    Article  Google Scholar 

  9. 9

    Mendez, R., Murthy, K. G., Ryan, K., Manley, J. L. & Richter, J. D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259 (2000)

    CAS  Article  Google Scholar 

  10. 10

    Rempel, R. E., Sleight, S. B. & Maller, J. L. Maternal Xenopus Cdk2–cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J. Biol. Chem. 270, 6843–6855 (1995)

    CAS  Article  Google Scholar 

  11. 11

    Charlesworth, A., Welk, J. & MacNicol, A. M. The temporal control of Wee1 mRNA translation during Xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3′-untranslated region. Dev. Biol. 227, 706–719 (2000)

    CAS  Article  Google Scholar 

  12. 12

    Simon, R. & Richter, J. D. Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins. Mol. Cell. Biol. 14, 7867–7875 (1994)

    CAS  Article  Google Scholar 

  13. 13

    Wu, L., Good, P. J. & Richter, J. D. The 36-kilodalton embryonic-type cytoplasmic polyadenylation element-binding protein in Xenopus laevis is ElrA, a member of the ELAV family of RNA-binding proteins. Mol. Cell. Biol. 17, 6402–6409 (1997)

    CAS  Article  Google Scholar 

  14. 14

    De, J. et al. Identification of four CCCH zinc finger proteins in Xenopus, including a novel vertebrate protein with four zinc fingers and severely restricted expression. Gene 228, 133–145 (1999)

    CAS  Article  Google Scholar 

  15. 15

    Lai, W. S., Carballo, E., Thorn, J. M., Kennington, E. A. & Blackshear, P. J. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to AU-rich elements and destabilization of mRNA. J. Biol. Chem. 275, 17827–17837 (2000)

    CAS  Article  Google Scholar 

  16. 16

    Parry, D. H., Hickson, G. R. & O’Farrell, P. H. Cyclin B destruction triggers changes in kinetochore behavior essential for successful anaphase. Curr. Biol. 13, 647–653 (2003)

    CAS  Article  Google Scholar 

  17. 17

    Yang, Z. et al. Silencing mitosin induces misaligned chromosomes, premature chromosome decondensation before anaphase onset, and mitotic cell death. Mol. Cell. Biol. 25, 4062–4074 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Collart, M. A. Global control of gene expression in yeast by the Ccr4–Not complex. Gene 313, 1–16 (2003)

    CAS  Article  Google Scholar 

  19. 19

    Morita, M. et al. Depletion of mammalian CCR4b deadenylase triggers increment of the p27Kip1 mRNA level and impairs cell growth. Mol. Cell. Biol. 13, 4980–4990 (2007)

    Article  Google Scholar 

  20. 20

    Reimann, J. D. et al. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645–655 (2001)

    CAS  Article  Google Scholar 

  21. 21

    Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCF(βTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell 4, 813–826 (2003)

    CAS  Article  Google Scholar 

  22. 22

    Tung, J. J. et al. A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc. Natl Acad. Sci. USA 102, 4318–4323 (2005)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Ohe, M., Inoue, D., Kanemori, Y. & Sagata, N. Erp1/Emi2 is essential for the meiosis I to meiosis II transition in Xenopus oocytes. Dev. Biol. 303, 157–164 (2007)

    CAS  Article  Google Scholar 

  24. 24

    Tung, J. J., Padmanabhan, K., Hansen, D. V., Richter, J. D. & Jackson, P. K. Translational unmasking of Emi2 directs cytostatic factor arrest in meiosis II. Cell Cycle 6, 725–731 (2007)

    CAS  Article  Google Scholar 

  25. 25

    Inoue, D., Ohe, M., Kanemori, Y., Nobui, T. & Sagata, N. A direct link of the Mos–MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs. Nature 446, 1100–1104 (2007)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Nishiyama, T., Ohsumi, K. & Kishimoto, T. Phosphorylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs. Nature 446, 1096–1099 (2007)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Liu, J., Grimison, B. & Maller, J. L. New insight into metaphase arrest by cytostatic factor: from establishment to release. Oncogene 26, 1286–1289 (2007)

    CAS  Article  Google Scholar 

  28. 28

    Ferrell, J. E. Building a cellular switch: more lessons from a good egg. Bioessays 21, 866–870 (1999)

    Article  Google Scholar 

  29. 29

    Ferrell, J. E. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002)

    CAS  Article  Google Scholar 

  30. 30

    Brandman, O., Ferrell, J. E., Li, R. & Meyer, T. Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310, 496–498 (2005)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  31. 31

    Castro, A., Mandart, E., Lorca, T. & Galas, S. Involvement of Aurora A kinase during meiosis I–II transition in Xenopus oocytes. J. Biol. Chem. 278, 2236–2241 (2003)

    CAS  Article  Google Scholar 

  32. 32

    Charlesworth, A., Cox, L. L. & MacNicol, A. M. Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J. Biol. Chem. 279, 17650–17659 (2004)

    CAS  Article  Google Scholar 

  33. 33

    Hake, L. E. & Richter, J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79, 617–627 (1994)

    CAS  Article  Google Scholar 

  34. 34

    Aoki, K., Matsumoto, K. & Tsujimoto, M. Xenopus cold-inducible RNA-binding protein 2 interacts with ElrA, the Xenopus homolog of HuR, and inhibits deadenylation of specific mRNAs. J. Biol. Chem. 278, 48491–48497 (2003)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. D. Richter for the anti-CPEB antibody; E. Wahle for the dCCR4 antibody; T. U. Mayer for the Emi2 antibody; and M. Fernández, members of the Méndez laboratory, J. Valcarcel and other colleagues from the Gene Expression Program for advice and for critically reading the manuscript. This work was supported by grants from the MEC, Fundación ‘La Caixa’ and Fundació ‘Marató de TV3’. R.M. is a recipient of a contract from the ‘Programa Ramon y Cajal’ (MEC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raúl Méndez.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-8 with Legends, Supplementary Tables 1-2 and additional references. (PDF 2079 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belloc, E., Méndez, R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 452, 1017–1021 (2008). https://doi.org/10.1038/nature06809

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.