Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The search for new cardiovascular biomarkers

Abstract

Despite considerable advances in the treatment of cardiovascular disease, it remains the leading cause of death in developed countries. Assessment of classic cardiovascular risk factors — including high blood pressure, diabetes and smoking — has a central role in disease prevention. However, many individuals with coronary heart disease (a narrowing of the blood vessels that supply the heart) have only one, or none, of the classic risk factors. Thus, new biomarkers are needed to augment the information obtained from traditional indicators and to illuminate disease mechanisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Receiver-operating-characteristic curves for the prediction of cardiovascular events.
Figure 2: The conceptual relationship of the genome, transcriptome, proteome and metabolome.

References

  1. 1

    Wilson, P. W. CDC/AHA workshop on markers of inflammation and cardiovascular disease: Application to clinical and public health practice: Ability of inflammatory markers to predict disease in asymptomatic patients: a background paper. Circulation 110, e568–e571 (2004).

    Article  Google Scholar 

  2. 2

    Wang, T. J. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N. Engl. J. Med. 355, 2631–2639 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Ware, J. H. The limitations of risk factors as prognostic tools. N. Engl. J. Med. 355, 2615–2617 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Pepe, M. S. & Thompson, M. L. Combining diagnostic test results to increase accuracy. Biostatistics 1, 123–140 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Samani, N. J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).

    CAS  Article  Google Scholar 

  7. 7

    McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Tachibana, K. et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594 (1998).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Peled, A. et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J. Clin. Invest. 104, 1199–1211 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Abi-Younes, S. et al. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ. Res. 86, 131–138 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Timpson, N. J. et al. C-reactive protein and its role in metabolic syndrome: mendelian randomisation study. Lancet 366, 1954–1959 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Wald, D. S., Law, M. & Morris, J. K. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. B. Med. J. 325, 1202 (2002).

    Article  Google Scholar 

  14. 14

    Weinberg, E. O. et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 106, 2961–2966 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Healy, A. M. et al. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation 113, 2278–2284 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Weinberg, E. O. et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation 107, 721–726 (2003).

    Article  Google Scholar 

  17. 17

    Shimpo, M. et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation 109, 2186–2190 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Anderson, N. L. et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol. Cell. Proteomics 3, 311–326 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Omenn, G. S. et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5, 3226–3245 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Wishart, D. S. et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 35, D521–D526 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Roe, C. R., Millington, D. S. & Maltby, D. A. Identification of 3-methylglutarylcarnitine. A new diagnostic metabolite of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. J. Clin. Invest. 77, 1391–1394 (1986).

    CAS  Article  Google Scholar 

  22. 22

    Frazier, D. M. et al. The tandem mass spectrometry newborn screening experience in North Carolina: 1997–2005. J. Inherit. Metab. Dis. 29, 76–85 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Brindle, J. T. et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Med. 8, 1439–1444 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Nielsen, E.-M. D. et al. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52, 573–577 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Kirschenlohr, H. L. et al. Proton NMR analysis of plasma is a weak predictor of coronary artery disease. Nature Med. 12, 705–710 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Sabatine, M. S. et al. Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation 112, 3868–3875 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Institutes of Health (to R.E.G. and T.J.W.), the Donald W. Reynolds Foundation (to R.E.G.), the Fondation Leducq (to R.E.G.) and the American Heart Association (to T.J.W.).

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Correspondence should be addressed to R.E.G. (rgerszten@partners.org).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gerszten, R., Wang, T. The search for new cardiovascular biomarkers. Nature 451, 949–952 (2008). https://doi.org/10.1038/nature06802

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing