Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stem-cell therapy for cardiac disease

Abstract

Heart failure is the leading cause of death worldwide, and current therapies only delay progression of the disease. Laboratory experiments and recent clinical trials suggest that cell-based therapies can improve cardiac function, and the implications of this for cardiac regeneration are causing great excitement. Bone-marrow-derived progenitor cells and other progenitor cells can differentiate into vascular cell types, restoring blood flow. More recently, resident cardiac stem cells have been shown to differentiate into multiple cell types present in the heart, including cardiac muscle cells, indicating that the heart is not terminally differentiated. These new findings have stimulated optimism that the progression of heart failure can be prevented or even reversed with cell-based therapy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mechanisms of, and potential barriers to, endogenous cardiac regeneration.
Figure 2: Many cell types and mechanisms have been proposed for cardiac therapy.
Figure 3: Challenges to stem-cell therapy for cardiac disease.

References

  1. Lopez, A. D. et al. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747–1757 (2006).

    Article  Google Scholar 

  2. Diwan, A. & Dorn, G. W. Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology (Bethesda) 22, 56–64 (2007).

    CAS  Google Scholar 

  3. Diwan, A. et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J. Clin. Invest. 117, 2825–2833 (2007).

    Article  CAS  Google Scholar 

  4. Wagers, A. J. & Conboy, I. M. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122, 659–667 (2005).

    Article  CAS  Google Scholar 

  5. Shi, X. & Garry, D. J. Muscle stem cells in development, regeneration, and disease. Genes Dev. 20, 1692–1708 (2006).

    Article  CAS  Google Scholar 

  6. Borchardt, T. & Braun, T. Cardiovascular regeneration in non-mammalian model systems: what are the differences between newts and man? Thromb. Haemost. 98, 311–318 (2007).

    Article  CAS  Google Scholar 

  7. Poss, K. D. Getting to the heart of regeneration in zebrafish. Semin. Cell Dev. Biol. 18, 36–45 (2007).

    Article  CAS  Google Scholar 

  8. Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619 (2006).

    Article  CAS  Google Scholar 

  9. Ahuja, P., Sdek, P. & MacLellan, W. R. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol. Rev. 87, 521–544 (2007).

    Article  CAS  Google Scholar 

  10. Rubart, M. & Field, L. J. Cardiac regeneration: repopulating the heart. Annu. Rev. Physiol. 68, 29–49 (2006).

    Article  CAS  Google Scholar 

  11. Laflamme, M. A. & Murry, C. E. Regenerating the heart. Nature Biotechnol. 23, 845–856 (2005). This comprehensive review discusses the cardiac regeneration potential of different stem cells and the possible experimental artefacts.

    Article  CAS  Google Scholar 

  12. Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    Article  CAS  Google Scholar 

  13. Laugwitz, K. L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653 (2005).

    Article  CAS  ADS  Google Scholar 

  14. Martin, C. M. et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol. 265, 262–275 (2004).

    Article  CAS  Google Scholar 

  15. Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA 100, 12313–12318 (2003).

    Article  CAS  ADS  Google Scholar 

  16. Hsieh, P. C. et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Med. 13, 970–974 (2007).

    Article  CAS  Google Scholar 

  17. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  ADS  Google Scholar 

  18. Heber-Katz, E. et al. The scarless heart and the MRL mouse. Phil. Trans. R. Soc. B 359, 785–793 (2004).

    Article  CAS  Google Scholar 

  19. Haris Naseem, R. et al. Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. Physiol. Genomics 30, 44–52 (2007).

    Article  Google Scholar 

  20. Wollert, K. C. & Drexler, H. Clinical applications of stem cells for the heart. Circ. Res. 96, 151–163 (2005).

    Article  CAS  Google Scholar 

  21. Menasche, P. Skeletal myoblasts as a therapeutic agent. Prog. Cardiovasc. Dis. 50, 7–17 (2007).

    Article  Google Scholar 

  22. Cleland, J. G. et al. Clinical trials update from the American Heart Association 2006: OAT, SALT 1 and 2, MAGIC, ABCD, PABA-CHF, IMPROVE-CHF, and percutaneous mitral annuloplasty. Eur. J. Heart Fail. 9, 92–97 (2007).

    Article  CAS  Google Scholar 

  23. Winitsky, S. O. et al. Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro. PLoS Biol. 3, e87 (2005).

    Article  Google Scholar 

  24. Leri, A., Kajstura, J. & Anversa, P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol. Rev. 85, 1373–1416 (2005). This is a comprehensive review of CSCs.

    Article  CAS  Google Scholar 

  25. Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).

    Article  Google Scholar 

  26. Jackson, K. A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001). This classic study reveals the participation of bone-marrow-derived stem cells in cardiac regeneration.

    Article  CAS  Google Scholar 

  27. Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    Article  CAS  ADS  Google Scholar 

  28. Balsam, L. B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004).

    Article  CAS  ADS  Google Scholar 

  29. Stuckey, D. J. et al. Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart. Stem Cells 24, 1968–1975 (2006).

    Article  CAS  Google Scholar 

  30. Young, P. P., Vaughan, D. E. & Hatzopoulos, A. K. Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog. Cardiovasc. Dis. 49, 421–429 (2007).

    Article  CAS  Google Scholar 

  31. Narmoneva, D. A. et al. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110, 962–968 (2004).

    Article  Google Scholar 

  32. Abdel-Latif, A. et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch. Intern. Med. 167, 989–997 (2007).

    Article  Google Scholar 

  33. Erbs, S. et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation 116, 366–374 (2007).

    Article  Google Scholar 

  34. Caplan, A. I. & Dennis, J. E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 1076–1084 (2006).

    Article  CAS  Google Scholar 

  35. Miyahara, Y. et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Med. 12, 459–465 (2006).

    Article  CAS  Google Scholar 

  36. Amado, L. C. et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl Acad. Sci. USA 102, 11474–11479 (2005).

    Article  CAS  ADS  Google Scholar 

  37. Gnecchi, M. et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661–669 (2006).

    Article  CAS  Google Scholar 

  38. Breitbach, M. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362–1369 (2007).

    Article  CAS  Google Scholar 

  39. Pallante, B. A. et al. Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ. Res. 100, e1–e11 (2007).

    Article  CAS  Google Scholar 

  40. Garry, D. J. & Olson, E. N. A common progenitor at the heart of development. Cell 127, 1101–1104 (2006).

    Article  CAS  Google Scholar 

  41. Nussbaum, J. et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 21, 1345–1357 (2007).

    Article  CAS  Google Scholar 

  42. Huber, I. et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 21, 2551–2563 (2007).

    Article  CAS  Google Scholar 

  43. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnol. 25, 1015–1024 (2007).

    Article  CAS  Google Scholar 

  44. Tomescot, A. et al. Differentiation in vivo of cardiac committed human embryonic stem cells in postmyocardial infarcted rats. Stem Cells 25, 2200–2205 (2007).

    Article  CAS  Google Scholar 

  45. Behfar, A. et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J. Exp. Med. 204, 405–420 (2007).

    Article  CAS  Google Scholar 

  46. Tzahor, E. Wnt/β-catenin signaling and cardiogenesis: timing does matter. Dev. Cell 13, 10–13 (2007).

    Article  CAS  Google Scholar 

  47. Liao, R., Pfister, O., Jain, M. & Mouquet, F. The bone marrow–cardiac axis of myocardial regeneration. Prog. Cardiovasc. Dis. 50, 18–30 (2007).

    Article  CAS  Google Scholar 

  48. Oh, H. et al. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann. N. Y. Acad. Sci. 1015, 182–189 (2004).

    Article  ADS  Google Scholar 

  49. Mouquet, F. et al. Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ. Res. 97, 1090–1092 (2005).

    Article  CAS  Google Scholar 

  50. Moretti, A. et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006).

    Article  CAS  Google Scholar 

  51. Winter, E. M. et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation 116, 917–927 (2007).

    Article  CAS  Google Scholar 

  52. Smart, N. et al. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177–182 (2007).

    Article  CAS  ADS  Google Scholar 

  53. Bearzi, C. et al. Human cardiac stem cells. Proc. Natl Acad. Sci. USA 104, 14068–14073 (2007).

    Article  CAS  ADS  Google Scholar 

  54. Smith, R. R. et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896–908 (2007).

    Article  Google Scholar 

  55. Dimmeler, S., Zeiher, A. M. & Schneider, M. D. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. 115, 572–583 (2005). This extensive review describes the cardiac regeneration potential of different stem cells and discusses the initial clinical studies.

    Article  CAS  Google Scholar 

  56. Askari, A. T. et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703 (2003).

    Article  CAS  Google Scholar 

  57. Fox, J. M., Chamberlain, G., Ashton, B. A. & Middleton, J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br. J. Haematol. 137, 491–502 (2007).

    Article  CAS  Google Scholar 

  58. Fazel, S. et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J. Clin. Invest. 116, 1865–1877 (2006).

    Article  CAS  Google Scholar 

  59. Puceat, M. & Ballis, A. Embryonic stem cells: from bench to bedside. Clin. Pharmacol. Ther. 82, 337–339 (2007).

    Article  CAS  Google Scholar 

  60. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  ADS  Google Scholar 

  61. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  ADS  Google Scholar 

  62. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell doi:10.1016/j.cell.2007.1011.1019 (2007).

  63. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  ADS  Google Scholar 

  64. Davis, M. E. et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl Acad. Sci. USA 103, 8155–8160 (2006).

    Article  CAS  ADS  Google Scholar 

  65. Chang, M. G. et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 113, 1832–1841 (2006).

    Article  Google Scholar 

  66. Kuhn, B. et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nature Med. 13, 962–969 (2007).

    Article  Google Scholar 

  67. Meluzin, J. et al. Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int. J. Cardiol. doi:10.1016/j.ijcard.2007.04.098 (in the press).

  68. Meluzin, J. et al. Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am. Heart J. 152, 975.e9–975.e15 (2006).

    Article  Google Scholar 

  69. Schachinger, V. et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J. 27, 2775–2783 (2006).

    Article  Google Scholar 

  70. Tatsumi, T. et al. Intracoronary transplantation of non-expanded peripheral blood-derived mononuclear cells promotes improvement of cardiac function in patients with acute myocardial infarction. Circ. J. 71, 1199–1207 (2007).

    Article  Google Scholar 

  71. Choi, J. H. et al. Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction. Circ. J. 71, 486–494 (2007).

    Article  Google Scholar 

  72. Ahmadi, H. et al. Safety analysis and improved cardiac function following local autologous transplantation of CD133+ enriched bone marrow cells after myocardial infarction. Curr. Neurovasc. Res. 4, 153–160 (2007).

    Article  ADS  Google Scholar 

  73. Stamm, C. et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J. Thorac. Cardiovasc. Surg. 133, 717–725 (2007).

    Article  Google Scholar 

  74. Losordo, D. W. et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115, 3165–3172 (2007).

    Article  Google Scholar 

  75. Gavira, J. J. et al. Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. J. Thorac. Cardiovasc. Surg. 131, 799–804 (2006).

    Article  Google Scholar 

  76. Ince, H. et al. Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J. Endovasc. Ther. 11, 695–704 (2004).

    Article  Google Scholar 

  77. Chen, S. et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J. Invasive Cardiol. 18, 552–556 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

V.F.M.S. was supported by a PhD fellowship of the Research Foundation — Flanders (FWO) and by a Belgian American Educational Foundation research fellowship. R.T.L. was supported by grants from the National Institutes of Health. The authors thank J. A. Epstein, P. Menasche and K. B. Margulies for helpful comments.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Correspondence should be addressed to R.T.L. (rlee@partners.org).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Segers, V., Lee, R. Stem-cell therapy for cardiac disease. Nature 451, 937–942 (2008). https://doi.org/10.1038/nature06800

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06800

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing