Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence of lower-mantle slab penetration phases in plate motions


It is well accepted that subduction of the cold lithosphere is a crucial component of the Earth’s plate tectonic style of mantle convection. But whether and how subducting plates penetrate into the lower mantle is the subject of continuing debate, which has substantial implications for the chemical and thermal evolution of the mantle1,2. Here we identify lower-mantle slab penetration events by comparing Cenozoic plate motions at the Earth’s main subduction zones3 with motions predicted by fully dynamic models of the upper-mantle phase of subduction, driven solely by downgoing plate density4. Whereas subduction of older, intrinsically denser, lithosphere occurs at rates consistent with the model, younger lithosphere (of ages less than about 60 Myr) often subducts up to two times faster, while trench motions are very low. We conclude that the most likely explanation is that older lithosphere, subducting under significant trench retreat, tends to lie down flat above the transition to the high-viscosity lower mantle, whereas younger lithosphere, which is less able to drive trench retreat and deforms more readily, buckles and thickens. Slab thickening enhances buoyancy (volume times density) and thereby Stokes sinking velocity, thus facilitating fast lower-mantle penetration. Such an interpretation is consistent with seismic images of the distribution of subducted material in upper and lower mantle5,6. Thus we identify a direct expression of time-dependent flow between the upper and lower mantle.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Present-day plate-advance velocities.
Figure 2: Past plate-advance velocities.
Figure 3: Model slab deformation.


  1. 1

    Van Keken, P. E., Hauri, E. H. & Ballentine, C. J. Mantle mixing: The generation, preservation and destruction of chemical heterogeneity. Annu. Rev. Earth Planet. Sci. 30, 493–525 (2002)

    CAS  ADS  Article  Google Scholar 

  2. 2

    McNamara, A. K. & Van Keken, P. E. Cooling of the Earth: A parameterized convection study of whole versus layered models. Geochem. Geophys. Geosyst. 1 10.1029/2000GC000045 (2000)

  3. 3

    Sdrolias, M. & Müller, R. D. Controls on back-arc basin formation. Geochem. Geophys. Geosyst. 7 10.1029/2005GC001090 (2006)

  4. 4

    Capitanio, F. A., Morra, G. & Goes, S. Dynamic models of downgoing plate buoyancy driven subduction: Subduction motions and energy dissipation. Earth Planet. Sci. Lett. 262, 284–297 (2007)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Bijwaard, H., Spakman, W. & Engdahl, E. R. Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–30078 (1998)

    ADS  Article  Google Scholar 

  6. 6

    Fukao, Y., Widiyantoro, S. & Obayashi, M. Stagnant slabs in the upper and lower mantle transition zone. Rev. Geophys. 39, 291–323 (2001)

    ADS  Article  Google Scholar 

  7. 7

    Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. & Lestunff, Y. Geodynamic model of mantle density heterogeneity. J. Geophys. Res. 98, 21895–21909 (1993)

    ADS  Article  Google Scholar 

  8. 8

    Van der Voo, R., Spakman, W. & Bijwaard, H. Mesozoic subducted slabs under Siberia. Nature 397, 246–249 (1999)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Kárason, H. & van der Hilst, R. D. in The History and Dynamics of Global Plate Motions (eds Richard, M., Gordon, R. & van der Hilst, R.) 277–288 (American Geophysical Union, Washington DC, 2000)

    Book  Google Scholar 

  10. 10

    Grand, S., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7, 1–7 (1997)

    Google Scholar 

  11. 11

    Isacks, B. & Molnar, P. Distribution of stresses in the descending lithosphere from a global survey of focal mechanism solutions of mantle earthquakes. Rev. Geophys. 9, 103–174 (1971)

    ADS  Article  Google Scholar 

  12. 12

    Creager, K. C., Chiao, L.-Y., Winchester, J. P. & Engdahl, E. R. Membrane strain rates in the subducting plate beneath South America. Geophys. Res. Lett. 22, 2321–2324 (1995)

    ADS  Article  Google Scholar 

  13. 13

    Cizkova, H., Cadek, O., Van den Berg, A. P. & Vlaar, N. J. Can lower mantle slab-like seismic anomalies be explained by thermal coupling between upper and lower mantles? Geophys. Res. Lett. 26, 1501–1504 (1999)

    ADS  Article  Google Scholar 

  14. 14

    Guillou-Frottier, L., Buttles, J. & Olson, P. Laboratory experiments on the structure of subducted lithosphere. Earth Planet. Sci. Lett. 133, 19–35 (1995)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Gurnis, M. & Hager, B. H. Controls of the structure of subducted slabs. Nature 335, 317–321 (1988)

    ADS  Article  Google Scholar 

  16. 16

    Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Effects of an endothermic phase-transition at 670 km depth in a spherical model of convection in the Earth's mantle. Nature 361, 699–704 (1993)

    ADS  Article  Google Scholar 

  17. 17

    Ita, J. & King, S. D. The influence of thermodynamic formulation on simulations of subduction zone geometry and history. Geophys. Res. Lett. 25, 1463–1466 (1998)

    ADS  Article  Google Scholar 

  18. 18

    Zhong, S. & Gurnis, M. Mantle convection with plates and mobile, faulted plate margins. Science 267, 838–843 (1995)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Christensen, U. R. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett. 140, 27–39 (1996)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Conrad, C. P. & Hager, B. H. Effects of plate bending and fault strength at subduction zones on plate dynamics. J. Geophys. Res. 104, 17551–17571 (1999)

    ADS  Article  Google Scholar 

  21. 21

    Lallemand, S., Heuret, A. & Boutelier, D. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem. Geophys. Geosyst. 6 Q09006 10.1029/2005GC000917 (2005)

    ADS  Article  Google Scholar 

  22. 22

    Moresi, L. & Gurnis, M. Constraints on the lateral strength of slabs from three-dimensional dynamic flow models. Earth Planet. Sci. Lett. 138, 15–28 (1996)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Bellahsen, N., Faccenna, C. & Funiciello, F. Dynamics of subduction and plate motion in laboratory experiments: Insights into the ‘‘plate tectonics’’ behavior of the Earth. J. Geophys. Res. 110, 1–15 (2005)

    Article  Google Scholar 

  24. 24

    Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L. & May, D. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–311 (2007)

    CAS  ADS  Article  Google Scholar 

  25. 25

    Stegman, D. R., Freeman, J., Schellart, W. P., Moresi, L. & May, D. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback. Geochem. Geophys. Geosyst. 7 Q03012 10.1029/2005GC001056 (2006)

    ADS  Article  Google Scholar 

  26. 26

    Royden, L. H. & Husson, L. Trench motion, slab geometry and viscous stresses in subduction systems. Geophys. J. Int. 167, 881–905 (2006)

    ADS  Article  Google Scholar 

  27. 27

    Enns, A., Becker, T. W. & Schmeling, H. The dynamics of subduction and trench migration for viscosity stratification. Geophys. J. Int. 160, 761–769 (2005)

    ADS  Article  Google Scholar 

  28. 28

    Carlson, R. L., Hilde, T. W. C. & Uyeda, S. The driving mechanism of plate tectonics: Relation to age of the lithosphere at trenches. Geophys. Res. Lett. 10, 297–300 (1983)

    ADS  Article  Google Scholar 

  29. 29

    Molnar, P. & Atwater, T. Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere. Earth Planet. Sci. Lett. 41, 330–340 (1978)

    ADS  Article  Google Scholar 

  30. 30

    Cloos, M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 105, 715–737 (1993)

    Article  Google Scholar 

Download references


We thank M. Sdrolias and D. Müller for sending us their data, and S. King for comments. This work was supported by a Schweizerischer Nationalfonds Förderungsprofessur (to S.G.).

Author Contributions The three authors contributed equally to this work.

Author information



Corresponding author

Correspondence to Saskia Goes.

Supplementary information

Supplementary Information

The file contains Supplementary Notes, Supplementary Figures 1-5 with Legends and additional references. (PDF 967 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goes, S., Capitanio, F. & Morra, G. Evidence of lower-mantle slab penetration phases in plate motions. Nature 451, 981–984 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing