Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Near-isothermal conditions in the middle and lower crust induced by melt migration

Abstract

The thermal structure of the crust strongly influences deformation, metamorphism and plutonism1,2,3. Models for the geothermal gradient in stable crust predict a steady increase of temperature with depth. This thermal structure, however, is incompatible with observations from high-temperature metamorphic terranes exhumed in orogens1,4,5,6. Global compilations7 of peak conditions in high-temperature metamorphic terranes define relatively narrow ranges of peak temperatures over a wide range in pressure, for both isothermal decompression and isobaric cooling paths. Here we develop simple one-dimensional thermal models that include the effects of melt migration. These models show that long-lived plutonism results in a quasi-steady-state geotherm with a rapid temperature increase in the upper crust and nearly isothermal conditions in the middle and lower crust. The models also predict that the upward advection of heat by melt generates granulite facies metamorphism, and widespread andalusite–sillimanite metamorphism in the upper crust. Once the quasi-steady-state thermal profile is reached, the middle and lower crust are greatly weakened due to high temperatures and anatectic conditions, thus setting the stage for gravitational collapse8, exhumation and isothermal decompression after the onset of plutonism. Near-isothermal conditions in the middle and lower crust result from the thermal buffering effect of dehydration melting reactions that, in part, control the shape of the geotherm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: One-dimensional numerical models showing evolution of predicted crustal geotherms through time as a function of mantle heat flux, melt focusing, and lower crustal solidus relations.
Figure 2: Comparison between mantle heat fluxes and the time to the onset of the quasi-steady-state melt-enhanced geotherm.

Similar content being viewed by others

References

  1. Thompson, A. B. in Understanding Granites: Integrating New and Classical Techniques (eds Castro, A., Fernandez, C. & Vigneresse, J. L.) 7–25 (Geol. Soc. Lond. Spec. Publ. 158, 1999)

    Google Scholar 

  2. Gerbi, C. C., Johnson, S. E. & Koons, P. O. Controls on low-pressure anatexis. J. Metamorph. Geol. 24, 107–118 (2006)

    Article  ADS  Google Scholar 

  3. Sandiford, M., Martin, N., Zhou, S. & Fraser, G. Mechanical consequences of granite emplacement during high-T, low-P metamorphism and the origin of “anticlockwise” PT paths. Earth Planet. Sci. Lett. 107, 164–172 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Patiño-Douce, A. E., Humphreys, E. D. & Johnston, A. D. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. Earth Planet. Sci. Lett. 97, 290–315 (1990)

    Article  ADS  Google Scholar 

  5. Hollister, L. S. Metamorphic evidence for rapid (2 mm/yr) uplift of a portion of the Central Gneiss Complex, Coast Mountains, B.C. Can. Mineral. 20, 319–332 (1982)

    CAS  Google Scholar 

  6. De Yoreo, J. J., Lux, D. R. & Guidotti, C. V. Thermal modelling in low-pressure/high-temperature metamorphic belts. Tectonophysics 188, 209–238 (1991)

    Article  ADS  Google Scholar 

  7. Pattison, D. R. M., Chacko, T., Farquhar, J. & McFarlane, C. R. M. Temperatures of granulite-facies metamorphism; constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. J. Petrol. 44, 867–900 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Molnar, P. & Lyon-Caen, H. Some simple physical aspects of the support, structure, and evolution of mountain belts. GSA Spec. Pap. 218, 179–207 (1988)

    Google Scholar 

  9. Leitch, A. M. & Weinberg, R. F. Modelling granite migration by mesoscale pervasive flow. Earth Planet. Sci. Lett. 200, 131–146 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Harley, S. L. The origins of granulites: a metamorphic perspective. Geol. Mag. 126, 215–247 (1989)

    Article  ADS  CAS  Google Scholar 

  11. Huerta, A. D., Royden, L. H. & Hodges, K. V. The interdependence of deformational and thermal processes in mountain belts. Science 273, 637–639 (1996)

    Article  ADS  CAS  Google Scholar 

  12. López, S. & Castro, A. Determination of the fluid-absent solidus and supersolidus phase relationships of MORB-derived amphibolites in the range 4–14 kbar. Am. Mineral. 86, 1396–1403 (2001)

    Article  ADS  Google Scholar 

  13. Chardon, D., Peucat, J. J., Jayananda, M., Choukroune, P. & Fanning, C. M. Archean granite-greenstone tectonics at Kolar (South India); interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion. Tectonics 21 10.1029/2001TC901032 (2002)

  14. Gibson, R. L. & Stevens, G. in What Drives Metamorphism and Metamorphic Relations? (eds Treloar, P. J. & O’Brien, P. J) 121–135 (Geol. Soc. Lond. Spec. Publ. 138, 1998)

    Google Scholar 

  15. Thompson, A. B., Schulmann, K., Jezek, J. & Tolar, V. Thermally softened continental extensional zones (arcs and rifts) as precursors to thickened orogenic belts. Tectonophysics 332, 115–141 (2001)

    Article  ADS  Google Scholar 

  16. Kay, R. W. & Mahlburg-Kay, S. Delamination and delamination magmatism. Tectonophysics 219, 177–189 (1993)

    Article  ADS  Google Scholar 

  17. Brown, M. in What Drives Metamorphism and Metamorphic Relations? (eds Treloar, P. J. & O’Brien, P. J) 137–169 (Geol. Soc. Lond. Spec. Publ. 138, 1998)

    Google Scholar 

  18. Hollister, L. S. & Andronicos, C. L. Formation of new continental crust in western British Columbia during transpression and transtension. Earth Planet. Sci. Lett. 249, 29–38 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Hollister, L. S., Hargraves, R. B., James, T. S. & Renne, P. R. The paleomagnetic effects of reheating the Ecstall pluton, British Columbia. Earth Planet. Sci. Lett. 221, 397–407 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Andronicos, C. L., Chardon, D. H., Hollister, L. S., Gehrels, G. E. & Woodsworth, G. J. Strain partitioning in an obliquely convergent orogen, plutonism, and synorogenic collapse: Coast Mountains Batholith, British Columbia, Canada. Tectonics 22, 1–24 (2003)

    Article  Google Scholar 

  21. Kenah, C. & Hollister, L. S. in Migmatites, Melting and Metamorphism (eds Atherton, M. P. & Gribble, C. D.) 142–162 (Shiva Geology Series, Cheshire, UK, 1983)

    Google Scholar 

  22. Furukawa, Y., Shinjoe, H. & Nishimura, S. Heat flow in the southwest Japan arc and its implication for thermal processes under arcs. Geophys. Res. Lett. 25, 1087–1090 (1998)

    Article  ADS  Google Scholar 

  23. Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Lee, B. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Rabinowicz, M. & Vigneresse, J. L. Melt segregation under compaction and shear channeling; application to granitic magma segregation in a continental crust. J. Geophys. Res. 109, B04407, 1–20 (2004)

    Article  Google Scholar 

  25. Morgan, J. P. Melt migration beneath mid-ocean spreading centers. Geophys. Res. Lett. 14, 1238–1241 (1987)

    Article  ADS  Google Scholar 

  26. MacCready, T., Snoke, A. W., Wright, J. E. & Howard, K. A. Mid-crustal flow during Tertiary extension in the Ruby Mountains core complex, Nevada. Geol. Soc. Am. Bull. 109, 1576–1594 (1997)

    Article  ADS  CAS  Google Scholar 

  27. Brown, M. & Solar, G. S. Shear-zone systems and melts; feedback relations and self-organization in orogenic belts. J. Struct. Geol. 20, 211–227 (1998)

    Article  ADS  Google Scholar 

  28. Hutton, D. H. W. Igneous emplacement in a shear-zone termination: The biotite granite at Strontian, Scotland. Geol. Soc. Am. Bull. 100, 1392–1399 (1988)

    Article  ADS  Google Scholar 

  29. Patchett, P. J. & Chase, C. G. Role of transform continental margins in major crustal growth episodes. Geology 30, 39–42 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Hodges, K. V., Le Fort, P. & Pecher, A. Possible thermal buffering by crustal anatexis collisional orogens: Thermobarometric evidence from Nepalese Himalaya. Geology 16, 707–710 (1988)

    Article  ADS  CAS  Google Scholar 

  31. Stüwe, K. Thermal buffering effects at the solidus. Implications for the equilibration of partially melted metamorphic rocks. Tectonophysics 248, 39–51 (1995)

    Article  ADS  Google Scholar 

  32. Pattison, D. R. M. & Tracy, R. J. in Contact Metamorphism (ed. Kerrick, D. M.) 105–206 (Mineralogical Society of America, Washington DC, 1991)

    Book  Google Scholar 

  33. Shaw, C. A., Heizler, M. T. & Karlstrom, K. E. in The Rocky Mountain Region; an Evolving Lithosphere; Tectonics, Geochemistry, and Geophysics (eds Karlstrom, K. E. & Keller, G. R.) 163–184 (American Geophysical Union, Washington DC, 2005)

    Book  Google Scholar 

  34. Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, Cambridge, UK, 2002)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation and Cornell University.

*In the print and online pdf version of this paper, it is erroneously listed as having Supplementary Information. This has been corrected on the HTML.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela V. Depine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Depine, G., Andronicos, C. & Phipps-Morgan, J. Near-isothermal conditions in the middle and lower crust induced by melt migration. Nature 452, 80–83 (2008). https://doi.org/10.1038/nature06689

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06689

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing