Science and technology for water purification in the coming decades


One of the most pervasive problems afflicting people throughout the world is inadequate access to clean water and sanitation. Problems with water are expected to grow worse in the coming decades, with water scarcity occurring globally, even in regions currently considered water-rich. Addressing these problems calls out for a tremendous amount of research to be conducted to identify robust new methods of purifying water at lower cost and with less energy, while at the same time minimizing the use of chemicals and impact on the environment. Here we highlight some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Waterborne virus attachment head and receptor on host cell.
Figure 2: Lead DNA sensor with a micro-nanofluidic device.
Figure 3: Membrane bioreactor treatment system for direct conversion to potable water.
Figure 4: Comb copolymer amphiphiles for fouling-resistant membranes.
Figure 5: Reverse osmosis and active desalination membrane processes.


  1. 1

    Montgomery, M. A. & Elimelech, M. Water and sanitation in developing countries: including health in the equation. Environ. Sci. Technol. 41, 17–24 (2007)

    ADS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Lima, A. A. M. et al. Persistent diarrhea signals a critical period of increased diarrhea burdens and nutritional shortfalls: a prospective cohort study among children in northeastern brazil. J. Infect. Dis. 181, 1643–1651 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Behrman, J. R., Alderman, H. & Hoddinott, J. Hunger and malnutrition. in Copenhagen Consensus—Challenges and Opportunities (London, 2004) OCLC 57489365 (London School of Hygiene and Tropical Medicine, 2004); 〈 Hunger%5Fand%5FMalnutrition%5F070504.pdf

    Google Scholar 

  4. 4

    Singh, P. & Bengtson, L. The impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region. J. Hydrol. 300, 140–154 (2005)

    ADS  Google Scholar 

  5. 5

    Shiyin, L., Wenxin, S., Shen, Y. & Li, G. Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. J. Glaciol. 49, 117–124 (2003)

    ADS  Google Scholar 

  6. 6

    Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005)

    ADS  CAS  Google Scholar 

  7. 7

    Bradley, R. S., Vuille, M., Diaz, H. F. & Vergara, W. Threats to water supplies in the tropical Andes. Science 312, 1755–1756 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    van der Kooij, D. in Heterotrophic Plate Counts and Drinking-water Safety: The Significance of HPCs for Water Quality and Human Health (eds Bartram, J., Cotruvo, J., Exner, M., Fricker, C. & Glasmacher, A.) 199–232 (IWA Publishing, World Health Organization, Geneva, 2003)

    Google Scholar 

  9. 9

    Pitman, G. K. Bridging Troubled Waters—Assessing The World Bank Water Resources Strategy (World Bank Publications, Washington DC, 2002)

    Google Scholar 

  10. 10

    World Health Organization. Emerging Issues in Water and Infectious Disease 1–22 (World Health Organization, Geneva, 2003)

  11. 11

    United States Environmental Protection Agency. 40 CFR parts 9, 141 & 142 National Primary Drinking Water Regulations: Long term 2 enhanced surface water treatment rule; final rule. Federal Register 71, 653–702 (2006)

  12. 12

    United States Environmental Protection Agency. 40 CFR parts 9, 141, & 142 National Primary Drinking Water Regulations: Stage 2 disinfectants and disinfection byproducts rule; final rule. Federal Register 71, 388–493 (2006)

  13. 13

    Krasner, S. W. et al. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 40, 7175–7185 (2006)

    ADS  CAS  Google Scholar 

  14. 14

    Muellner, M. G. et al. Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic? Environ. Sci. Technol. 41, 645–651 (2007)

    ADS  CAS  Google Scholar 

  15. 15

    Centers for Disease Control and Prevention. Safe Water Systems for the Developing World: A Handbook for Implementing Household-Based Water Treatment and Safe Storage Projects (CDC, Atlanta, 2000)

  16. 16

    Simonet, J. & Gantzer, C. Inactivation of poliovirus 1 and f-specific RNA phages and degradation of their genomes by UV irradiation at 254 nanometers. Appl. Environ. Microbiol. 72, 7671–7677 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Nuanualsuwan, S. & Cliver, D. O. Capsid functions of inactivated human picornaviruses and feline calicivirus. Appl. Environ. Microbiol. 69, 350–357 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Coyne, C. B. & Bergelson, J. M. CAR: A virus receptor within the tight junction. Adv. Drug Deliv. Rev. 57, 869–882 (2005)

    CAS  Google Scholar 

  19. 19

    Seiradake, E., Lortat-Jacob, H., Billet, O., Kremer, E. J. & Cusack, S. Structural and mutational analysis of human Ad37 and canine adenovirus 2 fiber heads in complex with the D1 domain of coxsackie and adenovirus receptor. J. Biol. Chem. 281, 33704–33716 (2006)

    CAS  Google Scholar 

  20. 20

    Hawkins, C. L., Pattison, D. I. & Davies, M. J. Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25, 259–274 (2003)

    CAS  Google Scholar 

  21. 21

    Nightingdale, Z. D. et al. Relative reactivity of lysine and other peptides-bound amino acids to oxidation by hypochlorite. Free Radic. Biol. Med. 29, 425–433 (2000)

    Google Scholar 

  22. 22

    Bergt, C., Fu, X., Huq, N. P., Kao, J. & Heinecke, J. W. Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. J. Biol. Chem. 279, 7856–7866 (2004)

    CAS  Google Scholar 

  23. 23

    Pattison, D. I. & Davies, M. J. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation. Biochemistry 44, 7378–7387 (2005)

    CAS  Google Scholar 

  24. 24

    Medina-Kauwe, L. K. Endocytosis of adenovirus and adenovirus capsid proteins. Adv. Drug Deliv. Rev. 55, 1485–1496 (2003)

    CAS  Google Scholar 

  25. 25

    Yates, M. V., Malley, J., Rochelle, P. & Hoffman, R. Effect of adenovirus resistance on UV disinfection requirements: A report on the state of adenovirus science. J. Am. Water Works Assoc. 98, 93–106 (2006)

    CAS  Google Scholar 

  26. 26

    Li, Q., Liang, W. & Shang, J. K. Enhanced visible-light absorption from PdO nanoparticles in nitrogen-doped titanium oxide thin films. Appl. Phys. Lett. 90, 063109 (2007)

    ADS  Google Scholar 

  27. 27

    Fu, P., Luan, Y. & Dai, X. Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity. J. Mol. Catal. Chem. 221, 81–88 (2004)

    CAS  Google Scholar 

  28. 28

    Medina-Valtierra, J., Garcia-Servin, J., Frausto-Reyes, C. & Calixto, S. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO2 particles deposited on glass microrods. Appl. Surf. Sci. 252, 3600–3608 (2006)

    ADS  CAS  Google Scholar 

  29. 29

    Changrani, R. G. & Raupp, G. B. Two-dimensional heterogeneous model for a reticulated-foam photocatalytic reactor. Am. Inst. Chem. Eng. J. 46, 829–842 (2000)

    CAS  Google Scholar 

  30. 30

    Molinari, R., Palmisano, L., Drioli, E. & Schiavello, M. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J. Membr. Sci. 206, 399–415 (2002)

    CAS  Google Scholar 

  31. 31

    Lin, H. & Valsaraj, K. T. Development of an optical fiber monolith reactor for photocatalytic wastewater treatment. J. Appl. Electrochem. 35, 699–708 (2005)

    CAS  Google Scholar 

  32. 32

    Blanco-Galvez, J., Fernandez-Ibanez, P. & Malato-Rodriguez, S. Solar photocatalytic detoxification and disinfection of water: Recent overview. J. Solar Energy Eng. 129, 4–15 (2007)

    CAS  Google Scholar 

  33. 33

    Gill, L. W. & McLoughlin, O. A. Solar disinfection kinetic design parameters for continuous flow reactors. J. Solar Energy Eng. 129, 111–118 (2007)

    CAS  Google Scholar 

  34. 34

    Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Sarkar, S. et al. Well-head arsenic removal units in remote villages of Indian subcontinent: Field results and performance evaluation. Water Res. 39, 2196–2206 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Khan, A. H. et al. Appraisal of a simple arsenic removal method for groundwater of Bangladesh. J. Environ. Sci. Health Part A 35, 1021–1041 (2000)

    Google Scholar 

  37. 37

    Silliman, S. E., Boukari, M., Crane, P., Azonsi, F. & Neal, C. R. Observations on elemental concentrations of groundwater in central Benin. J. Hydrol. 335, 374–388 (2007)

    ADS  Google Scholar 

  38. 38

    Rasul, S. B. et al. Electrochemical measurement and speciation of inorganic arsenic in groundwater of Bangladesh. Talanta 58, 33–43 (2002)

    CAS  Google Scholar 

  39. 39

    Chen, Z. L., Akter, K. F., Rahman, M. M. & Naidu, R. Speciation of arsenic by ion chromatography inductively coupled plasma mass spectrometry using ammonium eluents. J. Sep. Sci. 29, 2671–2676 (2006)

    CAS  Google Scholar 

  40. 40

    Sultan, J. & Gabryelski, W. Structural identification of highly polar nontarget contaminants in drinking water by ESI-FAIMS-Q-TOF-MS. Anal. Chem. 78, 2905–2917 (2006)

    CAS  Google Scholar 

  41. 41

    Kuo, T.-C. et al. Gateable nanofluidic interconnects for multilayered microfluidic separational systems. Anal. Chem. 75, 1861–1867 (2003)

    CAS  Google Scholar 

  42. 42

    Liu, J. W. et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl Acad. Sci. USA 104, 2056–2061 (2007)

    ADS  CAS  Google Scholar 

  43. 43

    Chang, I. H. et al. Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device. Environ. Sci. Technol. 39, 3756–3761 (2005)

    ADS  CAS  Google Scholar 

  44. 44

    Zhu, P. X. et al. Detection of water-borne E. coli O157 using the integrating waveguide biosensor. Biosens. Bioelectron. 21, 678–683 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Snyder, S. A. et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202, 156–181 (2007)

    CAS  Google Scholar 

  46. 46

    Davis, A. P., Sheppard, D. N. & Smith, B. D. Development of synthetic membrane transporters for anions. Chem. Soc. Rev. 36, 348–357 (2007)

    CAS  Google Scholar 

  47. 47

    Snyder, S. A., Vanderford, B. J. & Rexing, D. J. Trace analysis of bromate, chlorate, iodate, and perchlorate in natural and bottled waters. Environ. Sci. Technol. 39, 4586–4593 (2005)

    ADS  CAS  Google Scholar 

  48. 48

    Garelick, H., Dybowska, A., Valsami-Jones, E. & Priest, N. D. Remediation technologies for arsenic contaminated drinking waters. J. Soils Sediments 5, 182–190 (2005)

    CAS  Google Scholar 

  49. 49

    Schideman, L. C., Marinas, B. J., Snoeyink, V. L. & Campos, C. Three-component competitive adsorption model for fixed-bed and moving-bed granular activated carbon adsorbers. Part I. Model development. Environ. Sci. Technol. 40, 6805–6811 (2006)

    ADS  CAS  Google Scholar 

  50. 50

    Magnuson, M. L. & Speth, T. F. Quantitative structure—Property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon. Environ. Sci. Technol. 39, 7706–7711 (2005)

    ADS  CAS  Google Scholar 

  51. 51

    Yavuz, C. T. et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314, 964–967 (2006)

    Google Scholar 

  52. 52

    Fournier, D., Hawari, J., Streger, S. H., McClay, K. & Hatzinger, P. B. Biotransformation of N-nitrosodimethylamine by Pseudomonas mendocina KR1. Appl. Environ. Microbiol. 72, 6693–6698 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Kraemer, S. M., Xu, J. D., Raymond, K. N. & Sposito, G. Adsorption of Pb(II) and Eu(III) by oxide minerals in the presence of natural and synthetic hydroxamate siderophores. Environ. Sci. Technol. 36, 1287–1291 (2002)

    ADS  CAS  Google Scholar 

  54. 54

    Chaplin, B. P., Roundy, E., Guy, K. A., Shapley, J. R. & Werth, C. J. Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst. Environ. Sci. Technol. 40, 3075–3081 (2006)

    ADS  CAS  Google Scholar 

  55. 55

    Daiger, G. T., Rittmann, B. E., Adham, S. & Andreottola, G. Are membrane bioreactors ready for widespread application? Environ. Sci. Technol. 39, 399A–406A (2005)

    ADS  Google Scholar 

  56. 56

    Yang, W. B., Cicek, N. & Ilg, J. State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America. J. Membr. Sci. 270, 201–211 (2006)

    CAS  Google Scholar 

  57. 57

    Bixio, D. et al. Wastewater reuse in Europe. Desalination 189, 89–101 (2006)

    Google Scholar 

  58. 58

    Kimura, K., Yamato, N., Yamamura, H. & Watanabe, Y. Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater. Environ. Sci. Technol. 39, 6293–6299 (2005)

    ADS  CAS  Google Scholar 

  59. 59

    Ulbricht, M. & Belfort, G. Surface modification of ultrafiltration membranes by low temperature plasma.2. Graft polymerization onto polyacrylonitrile and polysulfone. J. Membr. Sci. 111, 193–215 (1996)

    CAS  Google Scholar 

  60. 60

    Carroll, T., Booker, N. A. & Meier-Haack, J. Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water. J. Membr. Sci. 203, 3–13 (2002)

    CAS  Google Scholar 

  61. 61

    Deratani, A., Li, C. L., Wang, D. M. & Lai, J. Y. New trends in the preparation of polymeric membranes for liquid filtration. Ann. Chim.-Sci. Mater. 32, 107–118 (2007)

    CAS  Google Scholar 

  62. 62

    Hester, J. F., Banerjee, P. & Mayes, A. M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules 32, 1643–1650 (1999)

    ADS  CAS  Google Scholar 

  63. 63

    Hester, J. F. & Mayes, A. M. Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single step by surface segregation. J. Membr. Sci. 202, 119–135 (2002)

    CAS  Google Scholar 

  64. 64

    Wang, Y. Q. et al. Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly(ether sulfone) ultrafiltration membranes by blending with pluronic F127. Langmuir 21, 11856–11862 (2005)

    CAS  Google Scholar 

  65. 65

    Asatekin, A., Kang, S., Elimelech, M. & Mayes, A. M. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J. Membr. Sci. 298, 136–146 (2007)

    CAS  Google Scholar 

  66. 66

    Kang, S., Asatekin, A., Mayes, A. M. & Elimelech, M. Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. J. Membr. Sci. 298, 42–50 (2007)

    Google Scholar 

  67. 67

    Ulbricht, M. Advanced functional polymer membranes. Polymer 47, 2217–2262 (2006)

    CAS  Google Scholar 

  68. 68

    Akthakul, A., Salinaro, R. F. & Mayes, A. M. Antifouling polymer membranes with sub-nanometer size selectivity. Macromolecules 37, 7663–7668 (2004)

    ADS  CAS  Google Scholar 

  69. 69

    Zhou, M., Kidd, T. J., Noble, R. D. & Gin, D. L. Supported lyotropic liquid crystal polymer membranes: promising materials for molecular-size-selective aqueous nanofiltration. Adv. Mater. 17, 1850–1853 (2005)

    CAS  Google Scholar 

  70. 70

    Asatekin, A. et al. Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers. J. Membr. Sci. 285, 81–89 (2006)

    CAS  Google Scholar 

  71. 71

    Revanur, R., McCloskey, B., Breitenkamp, K., Freeman, B. D. & Emrick, T. Reactive amphiphilic graft copolymer coatings applied to polyvinylidene fluoride ultrafiltration membranes. Macromolecules 40, 3624–3630 (2007)

    ADS  CAS  Google Scholar 

  72. 72

    Yang, S. Y. et al. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. Adv. Mater. 18, 709–712 (2006)

    CAS  Google Scholar 

  73. 73

    Phillip, W. A., Rzayev, J., Hillmyer, M. A. & Cussler, E. L. Gas and water liquid transport through nanoporous block copolymer membranes. J. Membr. Sci. 286, 144–152 (2006)

    CAS  Google Scholar 

  74. 74

    Nunes, S. P., Sforca, M. L. & Peinemann, K.-V. Dense hydrophilic composite membranes for ultrafiltration. J. Membr. Sci. 106, 49–56 (1995)

    CAS  Google Scholar 

  75. 75

    Yoon, K. et al. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polym. 47, 2434–2441 (2006)

    CAS  Google Scholar 

  76. 76

    Lu, Y., Suzuki, T. & Zhang, W. Moore, J. S. &Mariñas, B. J. Nanofiltration membranes based on rigid star amphiphiles. Chem. Mater. 19, 3194–3204 (2007)

    CAS  Google Scholar 

  77. 77

    Zhou, Y. & Tol, R. S. J. Evaluating the costs of desalination and water transport. Wat. Resour. Res. 41, W03003,–1–10 (2005)

    ADS  Google Scholar 

  78. 78

    Veerapaneni, S., Long, B., Freeman, S. & Bond, R. Reducing energy consumption for seawater desalination. J. Am. Water Works Assoc. 99, 95–106 (2007)

    CAS  Google Scholar 

  79. 79

    Morgan, L. A. et al. Solar distillation: a promising alternative for water provision with free energy, simple technology and a clean environment. Desalination 116, 45–56 (1998)

    Google Scholar 

  80. 80

    Bourounia, K., Chaibib, M. T. & Tadrist, L. Water desalination by humidification and dehumidification of air: state of the art. Desalination 137, 167–176 (2001)

    Google Scholar 

  81. 81

    McCutcheon, J. R., McGinnis, R. L. & Elimelech, M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination 174, 1–11 (2005)

    CAS  Google Scholar 

  82. 82

    Mathioulakis, E., Belessiotis, V. & Delyannis, E. Desalination by using alternative energy: review and state-of-the-art. Desalination 203, 346–365 (2007)

    CAS  Google Scholar 

  83. 83

    Alonitis, S. A., Kouroumbas, K. & Vlachakis, N. Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination 157, 151–158 (2003)

    Google Scholar 

  84. 84

    Seacord, T. F., Coker, S. D. & MacHarg, J. Affordable desalination collaboration 2005 results. In International Desalination And Water Reuse Quarterly (Green Global Publications, Anaheim, California, 2006)

    Google Scholar 

  85. 85

    Spiegler, K. S. & El-Sayed, Y. M. The energetics of desalination processes. Desalination 134, 109–128 (2001)

    CAS  Google Scholar 

  86. 86

    Hummer, G., Rasaiah, J. C. & Nowotyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)

    ADS  CAS  Google Scholar 

  87. 87

    Kalra, A., Garde, S. & Hummer, G. Osmotic water transport through carbon nanotube membranes. Proc. Natl Acad. Sci. USA 100, 10175–10180 (2003)

    ADS  CAS  Google Scholar 

  88. 88

    Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2003)

    ADS  Google Scholar 

  89. 89

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)

    ADS  CAS  Google Scholar 

  90. 90

    Fornasiero, F. et al. Ion exclusion by sub 2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA (in the press)

  91. 91

    Walz, T., Smith, B. L., Zeidel, M. L., Engel, A. & Agre, P. Biologically-active 2-dimensional crystals of aquaporin chip. J. Biol. Chem. 269, 1583–1586 (1994)

    CAS  Google Scholar 

  92. 92

    Qiao, R., Georgiadis, J. G. & Aluru, N. R. Differential ion transport induced electroosmosis and internal recirculation in heterogeneous osmosis membranes. Nano Lett. 6, 995–999 (2006)

    ADS  CAS  Google Scholar 

  93. 93

    Ishida, H., Donowaki, K., Inoue, Y., Qi, Z. & Sokabe, M. Synthesis and ion channel formation of novel cyclic peptides containing a non-natural amino acid. Chem. Lett. Jpn 26, 935–954 (1997)

    Google Scholar 

  94. 94

    Davis, A. P., Sheppard, D. N. & Smith, B. D. Development of synthetic membrane transporters for anions. Chem. Soc. Rev. 36, 348–357 (2007)

    CAS  Google Scholar 

  95. 95

    Nednoor, P., Gavalas, V. G., Chopra, N., Hinds, B. J. & Bachas, L. G. Carbon nanotube based biomimetic membranes: mimicking protein channels regulated by phosphorylation. J. Mater. Chem. 17, 1755–1757 (2007)

    CAS  Google Scholar 

  96. 96

    Parsegian, A. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221, 844–846 (1969)

    ADS  CAS  Google Scholar 

  97. 97

    Facciotti, M. T., Rouhani-Manshadi, S. & Glaeser, R. M. Energy transduction in transmembrane ion pumps. Trends Biochem. Sci. 29, 445–451 (2004)

    CAS  Google Scholar 

  98. 98

    Martz, E. Protein explorer: easy yet powerful macromolecular visualization. Trends Biochem. Sci. 27, 107–109 (2002)

    CAS  Google Scholar 

  99. 99

    van Raaij, M. J., Louis, N., Chroboczek, J. & Cusack, S. Structure of the human adenovirus serotype 2 fiber head domain at 1.5 Å resolution. Virology 262, 333–343 (1999)

    CAS  Google Scholar 

Download references


We acknowledge the US National Science Foundation Science and Technology Center, WaterCAMPWS, Center for Advanced Materials for the Purification of Water with Systems.

Author information



Corresponding author

Correspondence to Mark A. Shannon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shannon, M., Bohn, P., Elimelech, M. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.