Structure and mechanism of the M2 proton channel of influenza A virus


The integral membrane protein M2 of influenza virus forms pH-gated proton channels in the viral lipid envelope1. The low pH of an endosome activates the M2 channel before haemagglutinin-mediated fusion. Conductance of protons acidifies the viral interior and thereby facilitates dissociation of the matrix protein from the viral nucleoproteins—a required process for unpacking of the viral genome2. In addition to its role in release of viral nucleoproteins, M2 in the trans-Golgi network (TGN) membrane prevents premature conformational rearrangement of newly synthesized haemagglutinin during transport to the cell surface by equilibrating the pH of the TGN with that of the host cell cytoplasm3. Inhibiting the proton conductance of M2 using the anti-viral drug amantadine or rimantadine inhibits viral replication4,5,6,7. Here we present the structure of the tetrameric M2 channel in complex with rimantadine, determined by NMR. In the closed state, four tightly packed transmembrane helices define a narrow channel, in which a ‘tryptophan gate’ is locked by intermolecular interactions with aspartic acid. A carboxy-terminal, amphipathic helix oriented nearly perpendicular to the transmembrane helix forms an inward-facing base. Lowering the pH destabilizes the transmembrane helical packing and unlocks the gate, admitting water to conduct protons, whereas the C-terminal base remains intact, preventing dissociation of the tetramer. Rimantadine binds at four equivalent sites near the gate on the lipid-facing side of the channel and stabilizes the closed conformation of the pore. Drug-resistance mutations are predicted to counter the effect of drug binding by either increasing the hydrophilicity of the pore or weakening helix–helix packing, thus facilitating channel opening.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structure of the M2 channel.
Figure 2: Water accessibility of the M2 channel.
Figure 3: Low-pH-induced destabilization of the channel and opening of the Trp 41 gate.
Figure 4: Schematic illustration of M2 channel activation.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The structures have been deposited in the Protein Data Bank under the accession number 2RLF.


  1. 1

    Lamb, R. A., Holsinger, L. J. & Pinto, L. H. Receptor-Mediated Virus Entry into Cells (ed., Wimmer, E.) 303–321 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1994)

    Google Scholar 

  2. 2

    Helenius, A. Unpacking the incoming influenza-virus. Cell 69, 577–578 (1992)

    CAS  Article  Google Scholar 

  3. 3

    Ciampor, F. et al. Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus hemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. Virology 188, 14–24 (1992)

    CAS  Article  Google Scholar 

  4. 4

    Hay, A. J., Wolstenholme, A. J., Skehel, J. J. & Smith, M. H. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 4, 3021–3024 (1985)

    CAS  Article  Google Scholar 

  5. 5

    Wang, C., Takeuchi, K., Pinto, L. H. & Lamb, R. A. Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J. Virol. 67, 5585–5594 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Pinto, L. H., Holsinger, L. J. & Lamb, R. A. Influenza virus M2 protein has ion channel activity. Cell 69, 517–528 (1992)

    CAS  Article  Google Scholar 

  7. 7

    Chizhmakov, I. V. et al. Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells. J. Physiol. (Lond.) 494, 329–336 (1996)

    CAS  Article  Google Scholar 

  8. 8

    Sugrue, R. J. & Hay, A. J. Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology 180, 617–624 (1991)

    CAS  Article  Google Scholar 

  9. 9

    Holsinger, L. J. & Lamb, R. A. Influenza virus M2 integral membrane protein is a homotetramer Stabilized by formation of disulfide bonds. Virology 183, 32–43 (1991)

    CAS  Article  Google Scholar 

  10. 10

    Tang, Y., Zaitseva, F., Lamb, R. A. & Pinto, L. H. The gate of the influenza virus M2 proton channel is formed by a single tryptophan residue. J. Biol. Chem. 277, 39880–39886 (2002)

    CAS  Article  Google Scholar 

  11. 11

    Pinto, L. H. et al. A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. Proc. Natl Acad. Sci. USA 94, 11301–11306 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Wang, J. F., Kim, S., Kovacs, F. & Cross, T. A. Structure of the transmembrane region of the M2 protein H+ channel. Protein Sci. 10, 2241–2250 (2001)

    CAS  Article  Google Scholar 

  13. 13

    Kukol, A., Adams, P. D., Rice, L. M., Brunger, A. T. & Arkin, I. T. Experimentally based orientational refinement of membrane protein models: A structure for the influenza A M2 H+ channel. J. Mol. Biol. 286, 951–962 (1999)

    CAS  Article  Google Scholar 

  14. 14

    Betakova, T., Ciampor, F. & Hay, A. J. Influence of residue 44 on the activity of the M2 proton channel of influenza A virus. J. Gen. Virol. 86, 181–184 (2005)

    CAS  Article  Google Scholar 

  15. 15

    Sugrue, R. J., Belshe, R. B. & Hay, A. J. Palmitoylation of the influenza A virus M2 protein. Virology 179, 51–56 (1990)

    CAS  Article  Google Scholar 

  16. 16

    Aldrich, P. E. et al. Antiviral agents. 2. Structure–activity relationships of compounds related to 1-adamantanamine. J. Med. Chem. 14, 535–543 (1971)

    CAS  Article  Google Scholar 

  17. 17

    Loria, J. P., Rance, M. & Palmer, A. G. A relaxation-compensated Carr–Purcell–Meiboom–Gill sequence for characterizing chemical exchange by NMR spectroscopy. J. Am. Chem. Soc. 121, 2331–2332 (1999)

    CAS  Article  Google Scholar 

  18. 18

    Tobler, K., Kelly, M. L., Pinto, L. H. & Lamb, R. A. Effect of cytoplasmic tail truncations on the activity of the M(2) ion channel of influenza A virus. J. Virol. 73, 9695–9701 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Pinto, L. H. & Lamb, R. A. Understanding the mechanism of action of the anti-influenza virus drug amantadine. Trends Microbiol. 3, 271 (1995)

    CAS  Article  Google Scholar 

  20. 20

    Astrahan, P., Kass, I., Cooper, M. A. & Arkin, I. T. A novel method of resistance for influenza against a channel-blocking antiviral drug. Proteins 55, 251–257 (2004)

    CAS  Article  Google Scholar 

  21. 21

    Subczynski, W. K., Wojas, J., Pezeshk, V. & Pezeshk, A. Partitioning and localization of spin-labeled amantadine in lipid bilayers: an EPR Study. J. Pharm. Sci. 87, 1249–1254 (1998)

    CAS  Article  Google Scholar 

  22. 22

    Wang, J. F., Schnell, J. R. & Chou, J. J. Amantadine partition and localization in phospholipids membrane: a solution NMR study. Biochem. Biophys. Res. Commun. 324, 212–217 (2004)

    CAS  Article  Google Scholar 

  23. 23

    Griffin, S. D. et al. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 535, 34–38 (2003)

    CAS  Article  Google Scholar 

  24. 24

    Plugge, B. et al. A potassium channel protein encoded by chlorella virus PBCV-1. Science 287, 1641–1644 (2000)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Svensson, T. H. Dopamine release and direct dopamine receptor activation in the central nervous system by D-145, an amantadine derivative. Eur. J. Pharmacol. 23, 232–238 (1973)

    CAS  Article  Google Scholar 

  26. 26

    Swartz, K. J. & MacKinnon, R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18, 665–673 (1997)

    CAS  Article  Google Scholar 

  27. 27

    Lee, S.-Y. & MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430, 232–235 (2004)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Stouffer, A. L. et al. Structural basis for the function and pharmaceutical inhibition of an influenza virus proton channel. Nature doi: 10.1038/nature06528 (this issue).

  29. 29

    Call, M. E. et al. The structure of the ζζ transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127, 355–368 (2006)

    CAS  Article  Google Scholar 

  30. 30

    Chou, J. J., Baber, J. L. & Bax, A. Characterization of phospholipids mixed micelles by translational diffusion. J. Biomol. NMR 29, 299–308 (2004)

    CAS  Article  Google Scholar 

  31. 31

    Oxenoid, K. & Chou, J. J. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc. Natl Acad. Sci. USA 102, 10870–10875 (2005)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Blacklow, S. C. & Kim, P. S. Protein folding and calcium binding defects arising from familial hypercholesterolemia mutations of the LDL receptor. Nature Struct. Biol. 3, 758–762 (1996)

    CAS  Article  Google Scholar 

  33. 33

    Bax, A. et al. Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol. 239, 79–105 (1994)

    CAS  Article  Google Scholar 

  34. 34

    MacKenzie, K. R., Prestegard, J. H. & Engelman, D. M. Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon-carbon couplings and 13C chemical shifts. J. Biomol. NMR 7, 256–260 (1996)

    CAS  Article  Google Scholar 

  35. 35

    Chou, J. J., Gaemers, S., Howder, B., Louis, J. M. & Bax, A. A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J. Biomol. NMR 21, 377–382 (2001)

    CAS  Article  Google Scholar 

  36. 36

    Schwieters, C. D., Kuszewski, J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 66–74 (2002)

    Google Scholar 

  37. 37

    Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999)

    CAS  Article  Google Scholar 

  38. 38

    Zweckstetter, M. & Bax, A. Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791–3792 (2000)

    CAS  Article  Google Scholar 

  39. 39

    Allerhand, A. & Thiele, E. Analysis of Carr–Purcell spin-echo NMR experiments on multiple-spin systems. II. The effect of chemical exchange. J. Chem. Phys. 45, 902–916 (1966)

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Berardi for many discussions, and S. Harrison for discussion and assisting with the manuscript. This work was supported by the NIH and the Pew Scholars Program in the Biomedical Sciences awarded to J.J.C. J.R.S. is supported by an NIH F32 postdoctoral fellowship.

Author Contributions J.R.S. and J.J.C. designed research, performed research, analysed data and wrote the paper.

Author information



Corresponding author

Correspondence to James J. Chou.

Ethics declarations

Competing interests

J.J.C. and J.R.S. declare competing financial interests. A provisional patent entitled ‘Systems and Methods for Studying Influenza’ was filed on 25 October 2007 on behalf of Harvard Medical School by Wolf, Greenfield & Sacks, P.C.

Supplementary information

Supplementary Information

The file contains Supplementary Methods, Supplementary Tables S1-S2, Supplementary Figures S1-S7 with Legends and additional references. (PDF 661 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schnell, J., Chou, J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591–595 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing