Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultra-fine frequency tuning revealed in single neurons of human auditory cortex

Abstract

Just-noticeable differences of physical parameters are often limited by the resolution of the peripheral sensory apparatus. Thus, two-point discrimination in vision is limited by the size of individual photoreceptors. Frequency selectivity is a basic property of neurons in the mammalian auditory pathway1,2. However, just-noticeable differences of frequency are substantially smaller than the bandwidth of the peripheral sensors3. Here we report that frequency tuning in single neurons recorded from human auditory cortex in response to random-chord stimuli is far narrower than that typically described in any other mammalian species (besides bats), and substantially exceeds that attributed to the human auditory periphery. Interestingly, simple spectral filter models failed to predict the neuronal responses to natural stimuli, including speech and music. Thus, natural sounds engage additional processing mechanisms beyond the exquisite frequency tuning probed by the random-chord stimuli.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Response selectivity.
Figure 2: Frequency tuning in the responses to the random-chord stimulus.
Figure 3: Frequency discrimination based on single-trial responses.
Figure 4: Natural versus artificial responses.

References

  1. 1

    Howard, M. A. et al. A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Res. 724, 260–264 (1996)

    CAS  Article  Google Scholar 

  2. 2

    Nelken, I. in Integrative Functions in the Mammalian Auditory Pathway (eds Oertel, D., Popper, A. N. & Fay, R. R.) 358–416 (Springer, New York, 2002)

    Book  Google Scholar 

  3. 3

    Moore, B. C. J. An Introduction to the Psychology of Hearing Ch. 3 74–114 (Academic Press, London, 1982)

    Google Scholar 

  4. 4

    Evans, E. F. in Psychophysics and Physiology of Hearing (eds Evans, E. F. & Wilson, J. P.) 185–196 (Academic Press, London, 1977)

    Google Scholar 

  5. 5

    Ehret, G. & Schreiner, C. E. Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex. J. Comp. Physiol. A 181, 635–650 (1997)

    CAS  Article  Google Scholar 

  6. 6

    Ehret, G. & Merzenich, M. M. Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Res. 472, 139–163 (1988)

    CAS  Article  Google Scholar 

  7. 7

    Heinz, M. G., Colburn, H. S. & Carney, L. H. Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Comput. 13, 2273–2316 (2001)

    CAS  Article  Google Scholar 

  8. 8

    Fried, I. et al. Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. J. Neurosurg. 91, 697–705 (1999)

    CAS  Article  Google Scholar 

  9. 9

    Banai, K. & Ahissar, M. Poor frequency discrimination probes dyslexics with particularly impaired working memory. Audiol. Neurootol. 9, 328–340 (2004)

    Article  Google Scholar 

  10. 10

    Theunissen, F. E., Sen, K. & Doupe, A. J. Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J. Neurosci. 20, 2315–2331 (2000)

    CAS  Article  Google Scholar 

  11. 11

    Woolley, S. M., Gill, P. R. & Theunissen, F. E. Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain. J. Neurosci. 26, 2499–2512 (2006)

    CAS  Article  Google Scholar 

  12. 12

    Hsu, A., Borst, A. & Theunissen, F. E. Quantifying variability in neural responses and its application for the validation of model predictions. Network 15, 91–109 (2004)

    Article  Google Scholar 

  13. 13

    Read, H. L., Winer, J. A. & Schreiner, C. E. Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proc. Natl Acad. Sci. USA 98, 8042–8047 (2001)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Gaese, B. H. & Ostwald, J. Anesthesia changes frequency tuning of neurons in the rat primary auditory cortex. J. Neurophysiol. 86, 1062–1066 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Qin, L., Kitama, T., Chimoto, S., Sakayori, S. & Sato, Y. Time course of tonal frequency-response-area of primary auditory cortex neurons in alert cats. Neurosci. Res. 46, 145–152 (2003)

    Article  Google Scholar 

  16. 16

    Moshitch, D., Las, L., Ulanovsky, N., Bar-Yosef, O. & Nelken, I. Responses of neurons in primary auditory cortex (A1) to pure tones in the halothane-anesthetized cat. J. Neurophysiol. 95, 3756–3769 (2006)

    Article  Google Scholar 

  17. 17

    Recanzone, G. H., Guard, D. C. & Phan, M. L. Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J. Neurophysiol. 83, 2315–2331 (2000)

    CAS  Article  Google Scholar 

  18. 18

    Schwarz, D. W. & Tomlinson, R. W. Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta). J. Neurophysiol. 64, 282–298 (1990)

    CAS  Article  Google Scholar 

  19. 19

    Miller, L. M., Escabi, M. A., Read, H. L. & Schreiner, C. E. Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. J. Neurophysiol. 87, 516–527 (2002)

    Article  Google Scholar 

  20. 20

    Tramo, M. J., Shah, G. D. & Braida, L. D. Functional role of auditory cortex in frequency processing and pitch perception. J. Neurophysiol. 87, 122–139 (2002)

    Article  Google Scholar 

  21. 21

    Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Benasich, A. A. & Tallal, P. Infant discrimination of rapid auditory cues predicts later language impairment. Behav. Brain Res. 136, 31–49 (2002)

    Article  Google Scholar 

  23. 23

    Banai, K. & Ahissar, M. Auditory processing deficits in dyslexia: task or stimulus related? Cereb. Cortex 16, 1718–1728 (2006)

    Article  Google Scholar 

  24. 24

    McArthur, G. M. & Bishop, D. V. Speech and non-speech processing in people with specific language impairment: a behavioural and electrophysiological study. Brain Lang. 94, 260–273 (2005)

    CAS  Article  Google Scholar 

  25. 25

    deCharms, R. C., Blake, D. T. & Merzenich, M. M. Optimizing sound features for cortical neurons. Science 280, 1439–1443 (1998)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Schnupp, J. W., Mrsic-Flogel, T. D. & King, A. J. Linear processing of spatial cues in primary auditory cortex. Nature 414, 200–204 (2001)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Theunissen, F. E. et al. Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network 12, 289–316 (2001)

    CAS  Article  Google Scholar 

  28. 28

    Mukamel, R. et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309, 951–954 (2005)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Bleeck, S., Ives, T. & Patterson, R. D. Aim-mat: the auditory image model in MATLAB. Acta Acustica 90, 781–788 (2004)

    Google Scholar 

Download references

Acknowledgements

We thank the patients for their cooperation in participating in the experiments. We thank E. Behnke, T. A. Fields, E. Ho and C. Wilson for technical assistance. This work was supported by an ISF grant (to I.N.), a NINDS grant (to I.F.), the US-Israel BSF fund (R.M. and I.F.) and a European Molecular Biology Organization and Human Frontier Science Program fellowship (R.M.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to I. Fried or I. Nelken.

Supplementary information

Supplementary Information

The file contains Supplementary Notes and Supplementary Figure 1 with Legend, on the subjects of response reproducibility and evaluation of STRFs predictive power. (PDF 234 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bitterman, Y., Mukamel, R., Malach, R. et al. Ultra-fine frequency tuning revealed in single neurons of human auditory cortex. Nature 451, 197–201 (2008). https://doi.org/10.1038/nature06476

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing