Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-dimensional atomic-scale structure of size-selected gold nanoclusters


An unambiguous determination of the three-dimensional structure of nanoparticles is challenging1. Electron tomography requires a series of images taken for many different specimen orientations2. This approach is ideal for stable and stationary structures3. But ultrasmall nanoparticles are intrinsically structurally unstable and may interact with the incident electron beam4,5,6, constraining the electron beam density that can be used and the duration of the observation. Here we use aberration-corrected scanning transmission electron microscopy7, coupled with simple imaging simulation, to determine with atomic resolution the size, three-dimensional shape, orientation and atomic arrangement of size-selected gold nanoclusters that are preformed in the gas phase and soft-landed on an amorphous carbon substrate. The structures of gold nanoclusters containing 309±6 atoms can be identified with either Ino-decahedral, cuboctahedral or icosahedral geometries. Comparison with theoretical modelling of the system suggests that the structures are consistent with energetic considerations. The discovery that nanoscale gold particles function as active and selective catalysts for a variety of important chemical reactions has provoked much research interest in recent years8,9,10,11,12. We believe that the detailed structure information we provide will help to unravel the role of these nanoclusters in size- and structure-specific catalytic reactions11,12. We note that the technique will be of use in investigations of other supported ultrasmall metal cluster systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: High-resolution HAADF-STEM images of Au 309 clusters on a carbon film.
Figure 2: Relationship between integrated HAADF intensity and size of gold clusters.
Figure 3: Three-dimensional atomic structure of a gold cluster ( N = 309 ± 6).


  1. 1

    Koga, K., Ikeshoji, T. & Sugawara, K. Size- and temperature-dependent structural transitions in gold nanoparticles. Phys. Rev. Lett. 92, 115504–115507 (2004)

    ADS  Article  Google Scholar 

  2. 2

    Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003)

    CAS  Article  Google Scholar 

  3. 3

    Arslan, I., Yates, T. J. V., Browning, N. D. & Midgley, P. A. Embedded nanostructures revealed in three dimensions. Science 309, 2195–2198 (2005)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Iijima, S. & Ichihashi, T. Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 56, 616–619 (1986)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Ajayan, P. M. & Marks, L. D. Experimental evidence for quasimelting in small particles. Phys. Rev. Lett. 63, 279–282 (1989)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Marks, L. D. Experimental studies of small particles structures. Rep. Prog. Phys. 57, 603–649 (1994)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153–166 (1997)

    CAS  Article  Google Scholar 

  9. 9

    Sanchez, A. et al. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999)

    CAS  Article  Google Scholar 

  10. 10

    Hughes, M. D. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Tsunoyama, H., Sakurai, H., Negishi, Y. & Tsukuda, T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc. 127, 9374–9375 (2005)

    CAS  Article  Google Scholar 

  12. 12

    Chen, M. S. & Goodman, D. W. Structure-activity relationships in supported Au catalysts. Catal. Today 111, 22–33 (2006)

    CAS  Article  Google Scholar 

  13. 13

    Li, Z. Y., Yuan, J., Chen, Y., Palmer, R. E. & Wilcoxon, J. P. Direct imaging of core-shell structure in silver-gold bimetallic nanoparticles. Appl. Phys. Lett. 87, 243103 (2005)

    ADS  Article  Google Scholar 

  14. 14

    Li, Z. Y., Yuan, J., Chen, Y., Palmer, R. E. & Wilcoxon, J. P. Local three-dimensional visualization of nanoparticle assemblies. Adv. Mater. 17, 2885–2888 (2005)

    CAS  Article  Google Scholar 

  15. 15

    Krivanek, O. L., Delby, N. & Lupini, A. R. Towards sub-angstrom electron beams. Ultramicroscopy 78, 1–11 (1999)

    CAS  Article  Google Scholar 

  16. 16

    Kirkland, E. J. Advanced Computing in Electron Microscopy (Plenum Press, New York/London, 1998)

    Book  Google Scholar 

  17. 17

    Smith, D. J., Petford-Long, A. K., Wallenberg, L. R. & Bovin, J.-O. Dynamic atomic-level rearrangements in small gold particles. Science 233, 872–875 (1986)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Bovin, J.-O., Wallenberg, R. & Smith, D. J. Imaging of atomic clouds outside the surfaces of gold crystals by electron microscopy. Nature 317, 47–49 (1985)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Schebarchov, D. & Hendy, S. C. Transition from icosahedral to decahedral structure in a coexisting solid-liquid nickel cluster. Phys. Rev. Lett. 95, 116101–116104 (2005)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2003)

    ADS  Article  Google Scholar 

  21. 21

    Pratontep, S., Carroll, S. J., Xirouchaki, C., Streun, M. & Palmer, R. E. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 76, 045103–045109 (2005)

    ADS  Article  Google Scholar 

  22. 22

    von Issendorff, B. & Palmer, R. E. A new high transmission infinite range mass selector for cluster and nanoparticle beams. Rev. Sci. Instrum. 70, 4497–4501 (1999)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Palmer, R. E., Pratontep, S. & Boyen, H.-G. Nanostructured surfaces from size-selected clusters. Nature Mater. 2, 443–448 (2003)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Bleloch, A. L. & Lupini, A. Imaging at the picoscale. Mater. Today 7, 42–48 (2004)

    CAS  Article  Google Scholar 

  25. 25

    Jiang, J., Yuan, J. & Bleloch, A. L. Cluster-scale composition determination in a boron-rich compound. Appl. Phys. Lett. 91, 113107 (2007)

    ADS  Article  Google Scholar 

  26. 26

    Cleri, F. & Rosato, V. Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22–33 (1993)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Johnston, R. L. Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalton Trans. 4193–4207 (2003)

Download references


We thank Y. Chen for assistance with the electron microscopy work in Birmingham. We gratefully acknowledge the UK Engineering and Physical Science Research Council (EPSRC) and the EU for their financial support of the cluster work. The EPSRC funded the UK SuperSTEM facility at Daresbury Laboratory. N.P.Y. and B.C.C. acknowledge the EPSRC and the University of Birmingham for PhD funding, respectively. The work at Tsinghua University was supported by the Ministry of Science and Technology and Ministry of Education in China.

Author information



Corresponding author

Correspondence to Z. Y. Li.

Supplementary information

Supplementary Information

The file contains Supplementary Notes and Figures. (PDF 143 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Z., Young, N., Di Vece, M. et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2008).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing