Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A young massive planet in a star–disk system


There is a general consensus that planets form within disks of dust and gas around newly born stars1,2. Details of their formation process, however, are still a matter of ongoing debate. The timescale of planet formation remains unclear, so the detection of planets around young stars with protoplanetary disks is potentially of great interest. Hitherto, no such planet has been found. Here we report the detection of a planet of mass (9.8±3.3)MJupiter around TW Hydrae (TW Hya), a nearby young star with an age of only 8–10 Myr that is surrounded by a well-studied circumstellar disk. It orbits the star with a period of 3.56 days at 0.04 au, inside the inner rim of the disk. This demonstrates that planets can form within 10 Myr, before the disk has been dissipated by stellar winds and radiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: A pictographic sketch of the TW Hya system.
Figure 2: Radial velocity variation of TW Hya.
Figure 3: Sine-fitting periodogram of RV variation.
Figure 4: Bisector analysis of line profile asymmetry.


  1. Safronov, V. S. The protoplanetary cloud and its evolution. Sov. Astron. 10, 650–658 (1967)

    ADS  Google Scholar 

  2. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996)

    Article  ADS  Google Scholar 

  3. Mayor, M. & Queloz, D. A. Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995)

    Article  ADS  CAS  Google Scholar 

  4. The Extrasolar Planet

  5. Boss, A. P. Gas giant protoplanet formation. disk instability models with thermodynamics and radiative transfer. Astrophys. J. 563, 367–373 (2001)

    Article  ADS  Google Scholar 

  6. Haisch, K. E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Cieza, L. et al. The Spitzer c2d Survey of weak-line T-Tauri stars. II. New constraints on the timescale for planet building. Astrophys. J. 667, 308–328 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Carpenter, J. M. et al. Evolution of cold circumstellar dust around solar-type stars. Astron. J. 129, 1049–1062 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Chauvin, G. et al. Giant planet companion to 2MASSW J1207334–393254. Astron. Astrophys. 438, L25–L28 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Setiawan, J. et al. Evidence for a planetary companion around a nearby young star. Astrophys. J. 660, L145–L148 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Krist, J. E. et al. WFPC2 images of a face-on disk surrounding TW Hydrae. Astrophys. J. 538, 793–800 (2000)

    Article  ADS  Google Scholar 

  12. Qi, C. et al. Imaging the disk around TW Hydrae with the submillimeter array. Astrophys. J. 616, L11–L14 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Calvet, N. et al. Evidence for a developing gap in a 10 Myr old protoplanetary disk. Astrophys. J. 568, 1008–1016 (2002)

    Article  ADS  Google Scholar 

  14. Hughes, A. M. et al. An inner hole in the disk around TW Hydrae resolved in 7 mm dust emission. Astrophys. J. 664, 536–542 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Ratzka, T. et al. High spatial resolution mid-infrared observations of the low-mass young star TW Hya. Astron. Astrophys. 471, 173–185 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Rettig, T. W. et al. Discovery of CO gas in the inner disk of TW Hydrae. Astrophys. J. 616, L163–L166 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Salyk, C., Blake, G. A., Boogert, A. C. A. & Brown, J. M. Molecular gas in the inner 1 AU of the TW Hya and GM Aur transitional disks. Astrophys. J. 655, L105–L108 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Eisner, J. A., Chiang, E. I. & Hillenbrand, L. A. Spatially resolving the inner disk of TW Hydrae. Astrophys. J. 637, L133–L136 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Muzerolle, J. et al. Disk accretion in the 10 Myr old T Tauri stars TW Hydrae and Hen 3–600A. Astrophys. J. 535, L47–L50 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Kaufer, A. et al. Performance report on FEROS, the new fiber-linked echelle spectrograph at the ESO 1.52-m telescope. In Proc. SPIE Optical and IR Telescope Instrumentation and Detectors. 4008, 459–466 (2000)

    Chapter  Google Scholar 

  21. Setiawan, J. et al. Precise radial velocity measurements of G and K giants. First results. Astron. Astrophys. 397, 1151–1159 (2003)

    Article  ADS  Google Scholar 

  22. Herbst, W. & Koret, D. L. Rotation periods of four T Tauri stars. Astron. J. 96, 1949–1955 (1988)

    Article  ADS  Google Scholar 

  23. Mekkaden, M. V. Photometric and polarimetric variability of the isolated T Tauri star TW Hydrae. Astron. Astrophys. 340, 135–142 (1998)

    ADS  Google Scholar 

  24. Alencar, S. H. P. & Batalha, C. Variability of southern T Tauri stars. II. The spectral variability of the classical T Tauri star TW Hydrae. Astrophys. J. 571, 378–393 (2002)

    Article  ADS  Google Scholar 

  25. Alibert, Y., Mordasini, C., Benz, W. & Winisdoerffer, C. Models of giant planet formation with migration and disc evolution. Astron. Astrophys. 434, 343–353 (2005)

    Article  ADS  Google Scholar 

  26. Matsuo, T., Shibai, H., Ootsubo, T. & Tamura, M. Planet formation scenarios revisited: core accretion versus disk instability. Astrophys. J. 662, 1282–1292 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Boss, A. Evolution of the solar nebula. VII. Planet formation and survival of protoplanets formed by disk instability. Astrophys. J. 629, 535–548 (2005)

    Article  ADS  Google Scholar 

  28. Papaloizou, J. C. B. Disk-planet interaction during planet formation. Protostars Planets 5, 655–668 (2007)

    ADS  Google Scholar 

  29. Cumming, A., Marcy, G. W. & Butler, R. P. The Lick planet search: detectability and mass thresholds. Astrophys. J. 526, 890–915 (1999)

    Article  ADS  Google Scholar 

  30. Kürster, M., Schmitt, J. H. M. M., Cutispoto, G. & Dennerl, K. ROSAT and AB Doradus: the first five years. Astron. Astrophys. 320, 831–839 (1997)

    ADS  Google Scholar 

Download references


We thank the 2.2 m MPG/ESO La Silla team, especially P. Francois, B. Conn, M. Stefanon, O. Schütz, M. Morell and A. Gonzales for their help during the observations. We thank W. Herbst for constructive discussion and providing the supporting data.

Author Contributions The observations were carried out by J.S. and A.M.; T.H. and R.L. were responsible for the project planning. The data analysis was done by J.S., A.M., P.W. and M.K.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to J. Setiawan or R. Launhardt.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-3; Supplementary Figures 1-3 with Legends; Supplementary Discussion; Supplementary Notes; Supplementary Methods and additional references. (PDF 293 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Setiawan, J., Henning, T., Launhardt, R. et al. A young massive planet in a star–disk system. Nature 451, 38–41 (2008).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing